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In this paper we review results on asymptotic stability of stationary states of
PDEs. After scaling, our normal form is ut = Pu + ef(u, ux,...) + F(x, t),
where the (vector-valued) function u(x, t) depends on the space variable x and
time t. The differential operator P is linear, F(x, t) is a smooth forcing, which
decays to zero for t —> oo, and ef(u,...) is a nonlinear perturbation. We will
discuss conditions that ensure u —> 0 for t —> oo when |e| is sufficiently small.
If this holds, we call the problem asymptotically stable.

While there are many approaches to show asymptotic stability, we mainly
concentrate on the resolvent technique. However, comparisons with the Lya-
punov technique will also be given. The emphasis on the resolvent technique
is motivated by the recent interest in pseudospectra.
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1. Introduction

A basic result in the stability theory of ODEs can be formulated as follows.
If yo G K" is a fixed point of the ODE system

at

where <& : Rn —> Rn is a C1 vector field, then yo is asymptotically stable,1

if all eigenvalues of the Jacobian A = $y{yo) n a v e negative real parts. By
definition, asymptotic stability of yo means the following.

(1) For all fj, > 0, there is e > 0 so that2 \yo~yi\ < e implies \yo — y{t;y\)\ <
H for all t > 0. Here y(t; yi) is the solution of (1.1) with y = y\ at t = 0.

(2) There exists eo > 0 such that \y0 — y(t;yi)\ —> 0 as t —> oc whenever
\yo — 2/i| < £o-

Without going into details here (they are given in Section 2), the result
can be made plausible. One introduces a new variable u(t) by

in the sense of Lyapunov (Lyapunov 1956)
With (u,v) = Ylju3v3 a n d \u\2 = (uiu) w e denote the Euclidean inner product and
norm. The corresponding matrix norm is |̂ 4| = max{|j4u| : |u| = 1}.
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for which one obtains

eut = $(yo + eu)

s2f(u), \f{u)\ <C\u\2.

Therefore,

ut = Au + ef(u). (1.2)

By assumption, all eigenvalues of A have negative real parts, which implies
exponential decay of the solutions of the homogeneous equation ut = Au.
With proper arguments, the decay estimate can be extended to the nonlinear
system (1.2) if |e| is sufficiently small, and asymptotic stability follows.

There are two kinds of difficulty in generalizing this basic stability result
from ODEs to PDEs, one regarding the linear problem corresponding to
Ut = Au, the other the small nonlinearity. To be more specific:

(1) In the PDE case, the linear operator corresponding to the matrix A
might have a continuous spectrum and it might not be sufficient to
look only at eigenvalues. Instead of exponential decay one might obtain
only algebraic decay for solutions of the linear problem.

(2) In the PDE case, different norms enter the picture. For the linear
problem, one might obtain decay of solutions in one norm, but not in
another. Therefore, it is possible that a small nonlinear term ef(u)
leads to asymptotic stability, whereas a term ef(u,ux) does not.

Despite these difficulties, we will take the ODE case as a guideline. It will
be convenient to generalize (1.2) to a system of the form

(1.3)

where f(t, 0) = 0. For PDEs our corresponding normal form is

ut = Pu + ef(x,t,u,Du,...,Dru) + F(x,t). (1.4)

Here x varies in a spatial domain Q and IPu denotes the array of all spatial
derivatives of u = u(x, t) of order j .

The concept of asymptotic stability used in this paper is similar to Lya-
punov's, but slightly more restrictive. For the ODE (1.3) our concept is
as follows. We first consider the linear problem, obtained for e = 0, with
homogeneous initial condition

u = 0 at t = 0.

The forcing F(t) will drive the system away from u = 0, and we ask if u(t)
will approach zero as t —>• oo if lim^oo F(t) = 0 (or if F(t) —* 0 as t —> oo at
a certain rate). If this is so, we call (1.3) linearly asymptotically stable. If the
same holds whenever |e| is sufficiently small, then we call (1.3) nonlinearly
asymptotically stable (or simply stable).
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For the ODE case, we will show in Section 2 that linear and also nonlinear
asymptotic stability of (1.3) are both equivalent to the eigenvalue condition3

Re A < 0 for all A e a{A). (1.5)

In contrast, this eigenvalue condition is sufficient, but not necessary for
asymptotic stability in the sense of Lyapunov of the zero solution of (1.3)
with F = 0. For example, for the equation ut = — u3 the zero solution is
asymptotically stable in the sense of Lyapunov.

In short, the stability concept that we use here is slightly more restrictive
than Lyapunov's, but also more robust. This makes it easier to generalize
to PDEs, which is the main interest of the paper. In all cases, our sufficient
conditions on asymptotic stability also provide estimates of the solution
u(x, t) for 0 < t < T by F(x, t) for 0 < t < T, in suitable norms, and
the constant in the estimate will be independent of T and of |e| < £Q.
Therefore, asymptotic stability in Lyapunov's sense, where only the initial
data are perturbed, can always be shown under our assumptions. See also
Section 8.1.

(The introduction of the inhomogeneous term F(t) can also be motivated
by numerical considerations. When one interpolates the numerical values,
one obtains a function u which satisfies a perturbed differential equation.
The size of the perturbation is measured by F(t).)

A more detailed outline of the paper follows. (Sections 2 to 5 are par-
tially based on Kreiss and Lui (1997).) In Section 2 we use the Lyapunov
technique and the resolvent technique (or Laplace-transform technique) to
show asymptotic stability in the ODE setting if (1.5) holds. The solution-
operator technique, which plays a major role for nonlinear wave equations,
will be illustrated briefly in Section 2.3, but we refer to Racke (1992) for a
comprehensive treatment.

In Sections 3 to 5 we assume that the linear operator P in (1.4) has
constant coefficients and that the boundary conditions are periodic. Then,
for the linear problem ut = Pu + F, one can use Fourier expansions in space.
The following two points will be emphasized.

(1) Assuming the Cauchy problem for ut = Pu + F to be well posed, the
eigenvalues of the symbols P{VJJ) tell what kind of resolvent estimate
holds, i.e., how many derivatives one gains when estimating u by F.

(2) If one gains q derivatives in the resolvent estimate, then the nonlinearity
/ in (1.4) may depend on all space derivatives of u of order < q.

With a(A) we denote the set of all eigenvalues of A.
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For parabolic problems, these results are satisfactory. However, simple
hyperbolic equations like

Ut = Ux — U + £UUX + F(x, t)

cannot be treated in this way, because one does not gain a derivative in the
resolvent estimate. As we will show in Section 5 on hyperbolic problems,
the Lyapunov technique can be applied to overcome the difficulty.

To give a problem where the resolvent technique is more adequate, con-
sider the parabolic equation

ut = Pu = uxx + (a(x)u)x, 0 < x < 1, t > 0, (1.6)

with boundary conditions

u(0,t) = u(l,t) = 0, t>0, (1.7)

and initial condition

u(x, 0) = UQ(X), 0 < x < 1.

The ODE operator

Pu = uxx + {a{x)u)x

has the adjoint P*u = uxx — a(x)ux, which makes it easy to show by the
maximum principle that all eigenvalues of P are negative. (Here we use the
boundary conditions (1.7), for example.) Then, by our results in Section 6,
the resolvent technique applies and asymptotic stability follows, even for
fully nonlinear perturbations sf(x,t:u,ux,uxx). If one wanted to obtain
this result by the Lyapunov technique, one would have to construct an inner
product (•, -)w such that

(it, Pu)H < -c(u, u)n, c> 0.

However, it is not clear how to construct such an inner product, whose norm
also has to be strong enough to bound uxx.

It is natural to ask if one can combine the resolvent technique and the
Lyapunov technique, using the strengths of each. This is indeed possible
as demonstrated by Kreiss, Kreiss and Lorenz (1998a, 19986). One area
of applications is the study of mixed parabolic-hyperbolic systems. In the
present paper we do not pursue this, however.

Sections 7 to 11 deal with PDEs on unbounded spatial domains Q. In
fact, we only consider the cases fi = Md and ft — H.d, a half-space. As will
be shown in Sections 7 and 9, the unboundedness of the domain does not
lead to difficulties as long as the linear operator P has a strictly negative
zero-order term. A more interesting situation occurs when the zero-order
term of P vanishes (or is semi-negative).

Using the resolvent technique, we will discuss this for parabolic problems
on all space in Section 8 and will derive a weak resolvent estimate. The form
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of the linear estimate dictates more specific assumptions on the nonlinearity.
The results apply to viscous conservation laws.

In Section 10 we consider the scalar parabolic model problem

Ut = Au + a,\uxi + • • • + &duxd ~^~ G(x, t), x\ > 0, (1-8)

on a half-space, again in the critical situation when the zero-order term
vanishes, and show a weak resolvent estimate. The derivation is elementary
but requires some rather technical analysis of ordinary BVPs on the half-line.
It will become clear that the underlying hyperbolic part in (1.8) is important.
In particular, the conditions for the weak resolvent estimate depend on the
sign of the characteristic speed a\ in relation to the boundary x\ = 0.

Finally, in Section 11 we sketch stability results for parabolic systems on
the real line, which are applicable to travelling waves.

The main emphasis in this paper is the derivation of stability results by
the resolvent technique. Trefethen's work on pseudospectra (see Trefethen
(1997) and the references given there) was a major motivation for this em-
phasis. Once a stability problem is cast into the normal form (1.4), one
might want to answer the following questions.

(1) Applying Laplace transformation to the linear problem

ut = Pu + F(x,t), u(x,0)=0, (1.9)

one obtains the resolvent equation

{si - P)u = F, Re s > 0. (1.10)

What kind of estimates of u by F can one obtain? How do the estimates
depend on s and how do they translate into estimates for physical
variables?

(2) Given certain estimates for the linear problem (1.9), what kind of non-
linear problems (1.4) can one treat for small |e|?

(3) How are the resolvent estimates for (1.10) related to properties of the
spectrum or the pseudospectrum of P?

(4) If P depends on parameters - like the Reynolds number - how do the
constants in the resolvent estimate scale as functions of the parameters
and how does this affect the size \e\ of the nonlinear terms for which
one retains stability?

In this paper we only address the first two questions, though the other two
are clearly of great interest. We remark that Romanov (1973) has considered
plane-parallel Couette flow and has obtained an upper bound —cv (with
c > 0) for the real parts of the spectral values of a corresponding linearized
operator P . Kreiss, Lundbladh and Henningson (1994&) have made attempts
to obtain a bound for the resolvent (si — P ) " 1 and to address the fourth
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question for these flows. For the ODE case, we will sketch some simple
related observations in Section 2.4.

2. Ordinary differential equations

Consider an initial value problem

ut = Au + ef(t,u) + F(t), t>0; u(0) = u0. (2.1)

Here A 6 C n X n is a constant matrix, the functions

/ : C" x [0, oo) - • Cn, F: [0, oo) -> Cn

are assumed to be C°°, for simplicity, and UQ 6 Cn is a given initial vector.
We will always assume that F(t) is a bounded function and set

1^00 = sup |F(t) | .
t>0

The function f(t, u) is assumed to vanish at u — 0. More precisely, we
assume that

for all ci > 0 there exists C\ > 0 with \f(u,t)\ < C\\u\ if |u| < c\. (2.2)

Our concept of asymptotic stability is as follows.

Definition 2.1 Problem (2.1) with e = 0 is called linearly asymptotically
stable if

lim F(t) = 0 implies lim u(t) = 0. (2.3)
t—»oo t—»oo

Furthermore, (2.1) is called nonlinearly asymptotically stable if (2.3) holds
for all sufficiently small |e|.

If A has an eigenvalue A with Re A > 0 and A<p = \<p, 0 ^ 0 , then
u(t) = ext<f> solves ut = Au, but u(t) does not tend to zero as t —> oo.
Therefore, the following condition is necessary for asymptotic stability of
(2.1).

Eigenvalue condition.

R e A < 0 for all A G a (A). (2.4)

We will now show that (2.4) characterizes asymptotic stability.

Theorem 2.1 Under assumption (2.2) the eigenvalue condition (2.4) is ne-
cessary and sufficient for linear (and also for nonlinear) asymptotic stability
of (2.1).

For illustration, we will prove Theorem 2.1 in two different ways, namely
the Lyapunov technique (or energy estimate) and the resolvent technique.4

4 The assumption for F(t) is slightly different in the result proved by the resolvent tech-
nique: see Theorem 2.3.
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In the ODE case, both techniques lead to the same characterization of
asymptotically stable problems (Theorem 2.1). In the PDE case, the two
techniques have different strengths and weaknesses, however, as we will show
in the subsequent sections.

2.1. The Lyapunov technique

The linear problem
Let us first show linear asymptotic stability under assumption (2.4). The
easiest case occurs if A is normal, where we can use the following result.5

Lemma 2.1 Let A be normal and let

R e A < - < 5 < 0 for all A <S a {A). (2.5)

Then we have

A + A* < -261. (2.6)

Proof. There is a unitary matrix U such that

U*AU = A = diag(Aj), ReXj < -6.

Therefore,

A + A* = U(A + A)U* < -261.

•
Now assume that A is normal and let ut = Au + F(t). Then we obtain

— \u\2 = (u,ut) + (ut,u)
at

< - % | 2 + ^|F|2.

This implies

\u{t)\2 < e~

^maxjF(r) | 2 ; (2.7)

thus

H i ) | 2 < | U o | 2 + ^ | ; L = : c 2 , t>0. (2.8)

5 If Hi,H2 € C n x n are Hermitian matrices, then we write Hi < H2 if and only if
u'Hiu < u*H2U for all u € C". Similarly, we write H\ < H2 if and only if u*Hiu <
u*H2u for all u e Cn, u / 0.
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Clearly, we may start the estimate at any to and obtain

(*o) I2 + To m a x

0 to<r<t

Now recall the assumption lim^-^ F(t) = 0. If 77 > 0 is given, there exists
to(r]) with

1 sup | ^ ( T - ) | 2 < 7?2.

0 «0(r?)<T<oo

Therefore, (2.9) and (2.8) imply

\u(t)\2 < 2rj2 for t > £1(77),
and we have shown limt^oo u(t) = 0.

If A is not normal, the crucial inequality A + A* < —261 does not follow
from (2.5), in general. However, by changing the inner product, we can
basically still argue as before. The following notation will be used.

Notation
If if > 0 is a positive definite Hermitian matrix, then a scalar product and
norm are determined by

(u,v)H = u*Hv, \u\2
H = u*Hu, u,v£ Cn. (2.10)

The corresponding matrix norm is

\B\H = max \BU\H-

We note that the inequalities

\l<H<d, c > l , (2.11)

are equivalent to the norm estimates

- M2 < H2
H < c\u\2 for all u G C", (2.12)

and therefore (2.11) implies

-c\B\H<\B\<c\B\H, BeCnxn. (2.13)

Lemma 2.1 has the following generalization to arbitrary matrices A e
(nnxn

Theorem 2.2 If

ReA< -6 < -61 < 0 for all A € a(A), (2.14)

then there exists a positive definite Hermitian matrix H with

HA + A*H < -26XH < 0. (2.15)
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Proof. By Schur's theorem there exists a unitary matrix U so that

U*AU = A + R = diag(Aj) + R, Re A, < -6 < 0,

where R is strictly upper triangular. We set

D = d iag( l ,£ , . . . , e"" 1 ) , e > 0,

and consider

D~lU*AUD = A + D~lRD.

The entries in D~lRD are O(e). Setting S = (UD)~l one obtains

SylS"1 + (SAS'1)* = A + A + O(e)

for sufficiently small e. Therefore, if one defines H = S*S, one obtains the
desired inequality

HA + A*H = S*(A + A + O(e))S
< -26\H

for sufficiently small e > 0. •

Using | • \H one can estimate the solutions u(t) of uj = Au + F(t) as before,

— \u\2
H = {u,ut)H + (ut,u}H

= (u,(HA + A*H)u) + (

< -261\u\2
H + 2\u\H\F\H

Proceeding in the same way as above, we find that u(t) —> 0 as t —> c».
Here the equivalence of the norms | • | and | • |^ is used. The equivalence
is valid, of course, since we work in a finite dimensional setting. Let us
note, however, that the inclusion (2.11) leads to an equivalence constant;
see (2.12). This observation will be useful for PDEs, where we deal with
infinite families of matrices.

The nonlinear problem
Now consider the nonlinear problem (2.1). For simplicity, let A be normal
so that we can use the Euclidean norm for our estimates. In the general
case, the same arguments apply with \-\H-

Recall the estimate (2.8) for e = 0, where CQ > 0 without loss of generality.
By continuity, for any e there exists T£ > 0 such that

\u{t)\2 < 2,c2
Q =: c\ for 0<t<T£. (2.16)
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Using (2.2) we obtain

2\e\\u\\f(t,u)\

< -6\u\2 +-\F\2 + 2\e\C1
6

u\

in 0 < t < Te. Henceforth, assume that |e| is so small that

Then we find
d

-

2|e|Ci < 6-.

(2.17)

(2.18)

thus

|u(t)|2 <

< 2c2. (2.19)

Therefore, always assuming (2.18), we have shown that |u(i)|2 < 3c2, in
0 < t < Te implies |xi(t)|2 < 2c\ in 0 < t < Te. A simple continuation and
contradiction argument yields that u(t) exists for all t > 0 and

\u(t)\ <2c2
0 for all t > 0.

With the same arguments as before, we find

Ht ) | 2 <e -^ - t 0 ) / 2 2c 2 + ! sup |F(r)|2,
0 t0<T<OO

and therefore (2.3) holds. This proves Theorem 2.1.

2.2. The resolvent technique

Consider again the ODE (2.1). To illustrate the resolvent technique, we will
prove the following result.

Theorem 2.3 Assume (2.2), (2.4) and let F E L2. Then lim^oo u(t) = 0
if |e| is sufficiently small.

It will be convenient to have homogeneous initial data, which can always
be achieved by applying the simple transformation6

u(t) = v(t).

6 For generalizations, it is important to note that we do not make use of the exponential
decay of eAt.
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The function v(t) satisfies v(0) = 0 and

vt = Av + e (/(*, e-*u0 + v)- f(t, e"*^)) + G(t)

with

G(t) = F(i) + e-^Auo + uo) + ef(t,e-*«o), lim G(t) = 0.

If we set

we can write

= / <j>f(0<%
Jo

1

o
). (2.20)

Thus, for u we obtain a transformed equation

vt = Av + eg(t,v) + G(t), v(0) = 0,

of similar form with homogeneous initial data.
For notational convenience, we will assume that the initial data in (2.1)

are already homogeneous.

Properties of the Laplace transform
Let us first recall some elementary properties of the Laplace transform. If
g(t) is a continuous function of t > 0 with values in Cn, which satisfies a
growth restriction

\g(t)\ < Keat, t > 0,

then its Laplace transform is the analytic function
/•oo

g(s) = / e~stg(t)dt, Res>a.
Jo

The inverse transform reads
/•rj+ioo

where

9o(t) = 75—T / es*(?(s)ds, 77 > a,

for t > 0 , gQ(0) = -g(0), go(t) = 0 for t < 0.
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Here the path of integration is F,, = {s = 77 + i£, —00 < £ < 00}.
Parseval's relation reads

poo -1 poo
/ e~2r>t\g(t)\2 dt = — / |<?(r? + i£)|2d£, 77 > a. (2.21)

Jo 2TT J_OO

HgeC1 and

l<?(*)l + b i W I < # e a * , t > 0 ,

then

gt(s) = s<?(s) - g(0), Re s > a,

as follows directly from the definition through integration by parts.

Estimates in the linear case
Now consider (2.1) with e = 0, UQ = 0, and first assume that F(t) = 0
for t > T. Then F(s) and u(s) are well defined for Res > 0. Laplace
transformation gives us

su(s) = Au(s) + F(s), Res > 0; (2.22)

thus

u{s) = (si -A)~1F(s), Res>0. (2.23)

For any A € C n x " the matrix-valued function

(si-A)-1, seC\a(A),

is called the resolvent of A. We list some of its elementary properties.

Lemma 2.2

(a) For any A € C n X n we have

\(sl -A)-^ < X if \s\ > \A\.

(b) If Re A < 0 for all A e a(A), then

R := sup KsZ-A)" 1 ) (2.24)
Res>0

is finite. By definition, R is the resolvent constant of A.

(c) If A is normal and

max Re A =: —6 < 0,

then R = i .
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Proof.

(a) Let \s\ > \A\ and let

sv = Av + b, b,v<ECn.

Then one obtains \s\\v\ < \A\\v\ + \b\; thus \v\ < (\s\ - \A\)~l\b\.

(b) Define Q, = {s G C : Res > 0, \s\ < \A\ + 1}. By compactness,

max \(sl - A)"11 =: Ri

is finite. Together with (a) one obtains R < max{i?i, 1}.

(c) There is a unitary matrix U such that U*AU = A = diag(Aj) is diag-
onal. If

s — V + i?) V — 0) ^j — aj + i/%i aj — ~^->

then one obtains

-A)~l\2 = KsZ-A)"1!2

1
= max

j \ s -

= max

2

1

j
- rv,^2«i)'

In the last estimate equality holds for s = \(5j if Re a? = —6. This
proves the lemma. •

Assuming the eigenvalue condition (2.4), we obtain from (2.23)

\u(s)\ < R \F(s)\, Res>0.

Then Parseval's relation (see (2.21) and set rj = 0) implies that

/ \u(t)\2dt<R2 \F(t)\2dt. (2.25)
Jo Jo

So far, we have assumed that F(t) vanishes for large t. However, if F € L^
is arbitrary, we can approximate F by a sequence Fn with Fn(t) = F(t) for
t < n and Fn(t) = 0 for t > n + 1. A simple limit argument shows that the
estimate (2.25) still holds.

Remark 2.1 Using the definition of the resolvent constant R and Par-
seval's relation, it is not difficult to show that R is the best constant for
which (2.25) holds for all F G L2.

The estimate (2.25) is not strong enough to yield a nonlinear stability res-
ult, because one cannot bound point values u(t) in terms of the Z/2-integral.
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An estimate of point values is generally necessary, however, to control non-
linearities f(t,u). We can strengthen the estimate (2.25) as follows.

Theorem 2.4 Consider

ut = Au + F(t), t>0, u(0) = 0,

and assume the eigenvalue condition (2.4). There is a constant K\, depend-
ing only on A, so that

/•CO . . /-CO

/ (\u(t)\2 + \ut(t)\2) dt < Ki \F(t)\2dt. (2.26)

Proof. As before, we first assume F(t) = 0 for large t. Since u(0) = 0,
Laplace transformation yields

ut(s) = su(s) — Au{s) + F(s);

thus

\ut(s)\ < \A\\u(s)\ + \F(s)\

< (\A\R + l)\F(s)\.

Using the same arguments as above, the desired estimate follows. •

Since values of F(t) for t > T do not affect the solution u(t) for t < T,
it is not difficult to show that the estimate (2.26) can be restricted to any
finite time interval, that is,

J (\u(t)\2 + \ut(t)\
2) dt < Kx j \F{t)\2dt. (2.27)

The left-hand side of (2.27) can now be used to bound u in maximum
norm. This follows easily from u(0) = 0 and

—

< 2\u\\ut\ < \u\2 + \ut\
2.

J

= (u,ut) + (ut,u)

The resulting estimate is a simple example of a Sobolev inequality, which
we state next.

Lemma 2.3 Let u(t),a < t < b, denote a C1-function. Then we have

max |u(t) | 2< f 1 + -^— ] f \u\2dt + f \ut\
2dt. (2.28)

a<t<b \ 0 — a J Ja Ja

If u(t*) = 0 for some a < t* < b, then

rb

max
a<t<b

u(t)\2 < / (\u\2 + \ut\
2)dt. (2.29)
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Applying (2.28), for b —> oo, one obtains that

sup u(
f°° / \

( i ) | 2 < / (\u\2 + \ut\
2)dt. (2.30)

t>t0 Jto ^ '
The right-hand side tends to zero for to —> oo since /0°°(|M|2 + \ut\2)dt is
finite by Theorem 2.4. Thus we have shown the claim of Theorem 2.3 for
e = 0.

Nonlinear stability
Since our estimates are strong enough to control u in maximum norm, it is
not difficult to extend the result to small |e|. The arguments are as follows.

For any e there exists T£ > 0 with

/ (|u|2 + | n i |
2 ) d i < 4 i ^ 1 / |F | 2 d£=:c 2 . (2.31)

Jo ^ ' Jo
By (2.29),

\u(t)\<ci, 0<t<T£,
thus

|/(t,u(t))|<Ci|u(i)|, 0<i<T £ ,

and therefore

f € \f(t,u(t))\2dt <C\ f B |n|2 At. (2.32)
Jo Jo

Application of (2.27), with F(t) replaced by F(t) +ef(t,u(t)), yields

{\u\2 + \ut\
2)dt<2Kx p (\F\2 + \e\2C2\u\2) dt.

Assuming that |e| is so small that

2Kl\e\2C2<\,

we obtain

(\u\2 + \ut\
2)dt < 3Ki / |F | 2di = -Ci. (2.33)

_ ^ ' Jo 4

To summarize, from (2.31) we could conclude (2.33) under the above small-
ness assumption for \e\. A simple continuation and contradiction argument
yields existence of u{t) for all t > 0, and

r
Jo

<^-c2

4

As before, limi^oo u(t) = 0 follows.
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Outline of generalizations to PDEs
It is worthwhile to re-emphasize the main points of the above arguments
and to indicate generalizations. There are essentially three steps.

(1) An estimate for a linear problem ut = Pu + F(t) of the type

Nli/<*-i||iHlv. (2-34)

Such an estimate will generalize (2.26).

(2) A Sobolev inequality like

\u < K2\\u\\u. (2.35)

Such an estimate will generalize (2.29). In the PDE case, if the nonlin-
earity / depends also on ux, etc., then \\u\\u has to be strong enough
to bound |nx|oo, etc., too.

(3) An estimate of the nonlinear term of the following type. If |-u|oo < «
then

<asHtf. (2.36)

Such an estimate will generalize (2.32).

Now assume we have established (2.34), (2.35), (2.36). Then, in order to
bound the solution of the nonlinear problem

ut = Pu + ef(t, u) + F(t)

for small |e|, we formally proceed as follows. We consider ef(t,u(t)) as part
of the forcing so that (2.34) yields

). (2.37)

Assuming, tentatively, that

IH|i /<21f1 | |F | |v, (2.38)

one obtains from (2.35)

Then (2.36) implies

\\f(t,u(t))\\v<CK\\u\\u

and (2.37) yields

If e satisfies the restriction
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then the previous estimate gives us the desired bound

which is consistent with the tentative assumption (2.38). As in the proof of
Theorem 2.4, these formal arguments can be made rigorous by restricting
the relevant estimates to finite intervals 0 < t < T. Here it is assumed
that the norm \\u\\u is strong enough to guarantee continuation of a local
solution.

2.3. The solution-operator technique

There are cases where it is best to argue directly with the solution operator
of the linear homogeneous equation. For illustration, we consider the ODE
initial value problem

2 u(0)=uo, (2.39)ut u + £u

with constants 7 > 0, p > 1, and a continuous forcing F(t) which satisfies
an estimate

\F(t)\<-^^, /3>0. (2.40)

We ask for conditions on (3 and p which imply that, for sufficiently small |e|,
u(t) converges to zero for t —• 00 as fast as the solution of the homogeneous
equation

ut = ~j^ju, u(Q) = u0. (2.41)

The solution of (2.41) is

and the solution of (2.39) with e — 0 is

u(t) = (t + l)^uo +

= :uh(t) + J{t).

Using (2.40) we can bound the integral term as follows:

\J(t)\<K{t+ !)-*< Ae + l)^d£,
Jo

which shows that the solution u(t) decays like (t + 1)~7 if 7 — /3 < —1.
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Now consider the nonlinear problem (2.39). Writing eup as forcing, one
obtains

< \uo\ + K' + \e\ (max <f>(x)
\o<£<*

The integral is finite if 7 — 7/) < — 1. Thus, if one makes the assumptions

(3 > 1 + 7 and p > 1 + - ,
7

then the function <j>(t) remains bounded if |e| is sufficiently small and, there-
fore, |u(t)| < C ( t + l)-T.

For certain classes of PDEs the solution operator technique is very power-
ful. This is true, in particular, if an explicit solution for the linear part of
the equation is available, which yields accurate estimates of the solution op-
erator. We refer to the book by Racke (1992) for applications to nonlinear
wave equations and other systems of PDEs on all space. Earlier references
with similar ideas are Kawashima (1987), Klainerman and Ponce (1983),
Matsumura and Nishida (1979), Shatah (1982), and Strauss (1981).

2.4- Remarks on the size of perturbations

Remark 2.2 An important and interesting problem is to quantify the size
of the perturbation that one is allowed to apply to a stable system without
losing stability. This has been emphasized in the recent work of Trefethen
(1997). In general, the question is difficult, and any answer will depend on
the norms that are used. Some insight can be obtained as follows. Assuming
that Ut = Au + F(t) is linearly stable, we add a perturbation ef(u) = eBu,
which is also linear. (See Remark 2.3 below for nonlinear perturbations.)
Laplace transformation yields

su = Au + eBu + F; (2.42)

thus

u = e(sl - A)-lBu + (si - A)~lF.

Recall that R = sup R e s > 0 \(sl — A)'1] is the resolvent constant of A. If

\eB\R < i , (2.43)

say, then |u| < 2i?||F|, and we obtain essentially the same estimate of u by
F as in the unperturbed case. Thus, if (2.43) holds, stability is retained.
On the other hand, if \eB\R > 1, then the system (2.42) may be singular,
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allowing for instability, and we conclude that (2.43) is a realistic condition
for retaining stability. This shows the importance of the resolvent constant.

How is the resolvent constant R related to the eigenvalues of A? Trefethen
defines the spectral abscissa of A by

a(A) = max Re A.
\e{A)

Then, if A is normal and a(A) = — 6 < 0, we have R = | , as noted in
Lemma 2.2(c). In this case, condition (2.43) reads

\eB\ < ±6. (2.44)

If A is not normal, then R S> | is possible, as emphasized by Trefethen
(1997). Clearly, if R 3> \, the requirement (2.43) is much more restrictive
than (2.44). For this reason it is important to obtain good estimates for the
resolvent constant R. The techniques for proving the Kreiss matrix theorem
(Kreiss and Lorenz 1989) can be applied, in principle, but the treatment of
concrete examples may be formidable. For the alternative approach of com-
puting the pseudospectrum of A numerically, we refer to Trefethen (1997).
(If (T£(A) = {z G C : \{zl — ^l)"1! > 1/e} denotes the e-pseudospectrum of
A, then R = 1/eo, where £Q {̂  > 0 : CTe(-^) n e s m the left half-plane}.)

Remark 2.3 Consider the linear problem ut = Au + F(t),u(0) = 0.
If -F(O) = 0 (which can always be enforced by the transformation u =
te'tF(Q) + v), we obtain from (2.25) and uu = Aut + Ft the estimate

\ut\
2) dt < R2 J°°{\F\2 + |Ft|

2) dt. (2.45)

The left-hand side bounds sup4 |u(£)|2, and we can use (2.45) instead of
(2.26) to show nonlinear stability. Then our arguments, given above, show
that the size of R is again crucial for determining the size of |e| which retains
stability for the nonlinear perturbed problem.

3. Parabolic systems: periodic boundary conditions

Consider a parabolic equation

ut = Pu + ef(x,t,u,Du,D2u) + F(x,t), x€Rd, t > 0, (3.1)

where P is a constant coefficient operator,

Pu = Au + ^2 AJDJU + Bu- (3-2)
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Here

Dj = - ^ , A = D2 + .-- + D2, (3.3)

and Aj,B € C n x " are constant matrices. The function u(x,t) takes values
in Cn. For simplicity, / and F are assumed to be C°° functions of their
arguments; the nonlinearity / may depend on x, t, u and

Du = (D\u,..., Ddu), D2u = {DiDj

A main assumption is that F(x,t) and f(x,t,u,Du,D2u) are 27r-periodic
in each Xj, and we seek a solution u(x,i) with the same spatial periodicity
property. In other words, the space variable x lives in the d-torus Td =

We want to discuss asymptotic stability using the Laplace transform (or
resolvent) technique and will assume, without loss of generality, a homogen-
eous initial condition

u(x,0) = 0, xeRd. (3.4)

Setting

v = (u, Du, D2u),

we will assume that f(x,t,v) vanishes at v = 0. More precisely, with an
integer p specified below, we require the following.

Assumption 3.1 For all c\ > 0 there exists C\ > 0 with

\D%f(x,t,v)\ < d\v\ if |v| < ci , \0\<p,

\D%Dlf(x,t,v)\ < d i f M < c i , \P\ + | 7 | < P, |7l > 1- (3-5)

We will show nonlinear asymptotic stability of (3.1) in the sense of the
following theorem.7

Theorem 3.1 Let Assumption 3.1 hold with p = d + 5, and let

\\F{-,t)\\2Hv & <oo (3.6)
/•oo

Jo>o

be finite. If |e| is small enough, then maxx |u(x,t)| —> 0 as t —> oo.

Remark 3.1 The value p = d + 5 is not optimal; that is, it suffices to
require Assumption 3.1 and (3.6) with a smaller value of p. For most ap-
plications this is uninteresting, since the assumptions hold for all p if they
hold for some small p. See also Remark 3.2 on page 228.

7 We use the standard notation \\u\\2
HP = X! w <p ||-DaM||2 where ||u||2 = JTd |u(a;)|2dx,

Da = D"1 ... D%d and |a | = £.,.<*;,.
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The linear problem
To begin with, consider the linear problem ut = Pu + F. Applying Fourier
expansion in space, we obtain

ut(uj, t) = P(VJJ)U{U, t) + F(LO, t), u € Zd. (3.7)

Here

u(u,t) = (2Tr)-d/2 I e-iuj'xu(x,t)dx, us • x =

and
d

P(iu) = -\u\2I + iY^VjAj + B (3.8)

is the symbol of P. Denoting the Laplace transform of u(u>,t) by U(UJ,S),

we obtain from (3.7)

su = P(IUJ)U + F. (3.9)

As we will show, good estimates of u in terms of F can be obtained if the
matrices P(ico) satisfy the eigenvalue condition of the ODE case uniformly
in CO. Accordingly, we make the following assumption, which we will discuss
at the end of the section.

Assumption 3.2 (Eigenvalue Assumption) There exists 6 > 0 such
that

R e A < - < 5 < 0 for all A € <r(P(iu;)), u£Zd.

If Assumption 3.2 is satisfied, the matrices si — -P(iu>) are nonsingular for
Res > 0, and one has the following uniform estimate for the resolvents of
P(iu,).

Lemma 3.1 If Assumption 3.2 holds, then there is a constant K\ with

\{sl - P{iu)yl\ < .f1 for all Res>0, UJ £ Zd. (3.10)

Proof. First consider large |o;|. We write

sI-P(\u>) = (s + | w | 2 ) / - Q ( u ; ) (with |Q| < C(M + 1))

Thus, there is C > 0 such that (3.10) holds for \u\ > C.
There are only finitely many u> € Zd with \u>\ < C. For these a;-vectors,

we apply the resolvent estimate of Lemma 2.2b. •
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Using (3.9) and (3.10) we can estimate u in terms of F,

and Parseval's relation yields the basic inequality
/•oo poo

/ \\u(;t)\\2
Hidt<K2 / \\F(-,t)\\2dt. (3.12)

Jo Jo
If we first apply Da to the differential equation ut = Pu + F and sum the
resulting inequalities (3.12) over |a| < p, we find

/•OO /-OO

/ \\u(;t)\\2
HP+adt<K2 \\F(-,t)\\2

HPdt, p = 0 , l , 2 , . . . . (3.13)
Jo Jo

Using the differential equation ut = Pu + F, we can also estimate ut and its
space derivatives. For example,

since P is of second order. Furthermore, since values of F(x,t) for t > T
do not affect the solution u(x, t) for t < T, we can restrict the resulting
estimates to any finite time interval. Let us summarize these results.

Theorem 3.2 Let ut = Pu + F satisfy the Eigenvalue Assumption (As-
sumption 3.2). There is a constant K, independent of F and T, with

[ (\\ufHP+2 + \ \ u t \ \ 2
H P ) d t < K f \\F\\2

HPdt, p = 0 , l , 2 , . . . . (3.14)
o v J Jo

To estimate u (and some of its derivatives) in maximum norm, we will
make use of the following Sobolev inequality.

Theorem 3.3 Let v € Hp(Td). If p > \ then v € C(Td) and

< CPid|M|HP. (3.15)oo <\v

The constant Cp^ does not depend on v.

By (2.29) we have, for any x,
rl

max u(x,t)\2 < I
o<t<T v /l ~ Jo

Taking the maximum over x e Td and using the above Sobolev inequality,
we find that

rT d

(\\u\\2
HP + | | u t | | ^ p j d t if P > 2 - ( 3 - 1 6 )

Again, we can apply the same estimate to derivatives Dau and obtain

m a x : \ D a u ( ; t ) \ l o < C f (\\ufHP + \\ut\\
2
HP) dt if p > \ a \ + ~. (3.17)
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In terms of v = (u, Du, D2u), we have the following bound:

\\2
HP + \\ut\\

2
HP)dt if p > | « | + 2 + ^ . (3.18)ff

(Clearly, estimates (3.17) and (3.18) are valid for any sufficiently regular
function u(x, t) with u — 0 at t — 0; the PDE has not been used.)

After these preparations, let us prove Theorem 3.1.

The nonlinear problem
Consider (3.1) for any e. There exists T£ > 0 with

/ (\\u\\2
HP+2 + \\ut\\

2
HP)dt<4K \\F\\2

HPdt. (3.19)
Jo v ' Jo

(The consideration of (3.19) is motivated by the fact that (3.19) is valid for
e = 0 with AK replaced by K; see Theorem 3.2.) We want to prove that
(3.19) holds for T£ = oo if |e| is sufficiently small. As before, we set

v = (u,Du, D2u)

and use the linear estimate of Theorem 3.2 with F(x, t) replaced by F(x, t) +
ef(x,t,v(x,t)), to obtain

s:
/•OO rTe

< 2K \\F\\2
HPdt + 2K\e\2 \\f(;t,v(-,t))fHPdt. (3.20)

Jo Jo

It remains to prove that we can bound the integral / 0
 e | | / | |^P dt in terms of

the left-hand side of (3.20). Basically, this turns out to be possible because
the left-hand side of (3.20) dominates the maximum norm of sufficiently
many derivatives of v if p is large. As we will see, our choice p = d + 5
suffices.

The main technical difficulty is treated in the following theorem. In its
proof, the simple estimate

< M
for the L2-norm of the product of two functions is used. The definition of K
in the theorem is motivated by (3.18).

Theorem 3.4 (estimate based on chain rule) Let v : Td —> C m and
/ : C m —> Cn denote functions of class Cp, where p = d + 5. Assume

\v{x)\ <B, x<E Td,

and let CB denote a bound for the derivatives of f(v) in the ball \v\ < B,

\D2f(v)\<CB if \v\<B, | 7 | < p .
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We set

K := max{\Dav\oo : |a| + 2 + - < p}.

(The maximum is taken over all multi-indices a with |a| + 2 + ^ < p.) Then
the composite function f(v(x)),x G Td, satisfies

\\DaU ° «)|| < CCB (1 + KP-1) \\V\\HP (3.21)

for 1 < |a| < p. The constant C is independent of v and / .

Proof. By the chain rule

Da(f o v)(x) =

where o\,..., a^ are multi-indices with

a\-\ h afc = a,

<j>(r(v) is a derivative of f(v) of order < p, and ca are numerical coefficients.
Therefore,

\\D*(fov)\\<

A factor Da'v can be bounded in maximum norm by K if

d
P \aj\ 2"

Suppose there are two factors, Daiv and Da2v, say, whose maximum norm
cannot be bounded by K. Then

< I I 2 - d < I I 2 -•
~~ 2 ~~ 2 '

thus

However, this contradicts our choice p = d + 5. Therefore, each product

Daiv...Dakv

contains at most one factor which cannot be estimated in maximum norm
by K. We conclude

\ \ D a i v ... D a k v \ \ < C ( 1 + K P ~ 1 ) \\V\\HV, l < k < p .

This proves the theorem. D
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R e m a r k 3.2 In our bound of \\Daiv... Dakv\\, we have only used the
simple inequality H^ll ̂  l^looll^ll a n d Sobolev's inequality. The condition
on p can be relaxed if one instead uses Holder's inequality and a Gagliardo-
Nirenberg inequality. See, for example, Hagstrom and Lorenz (1995) or
Racke (1992).

Note that the estimate (3.21) does not hold, in general, for a = 0, as
the example / = 1 shows. In our application we assume, however, that /
vanishes for v = 0. A corresponding result is formulated next.

Theo rem 3.5 Let v : Td - • C m and / : Td x Cm -> C" denote functions
of class Cp, where p = d + 5. We consider the composite function

f(x,v(x)), xeTd.

Assuming that

\v(x)\<B, xeTd,

we require the following estimates for the derivatives of / in the ball \v\ < B:

\D%f{x,v)\ < CB\v\ if \v\<B, \/3\<p;

\D%Dlf(x,v)\ < CB i f H < B , |/3| + | 7 | < P , M > 1 -

S e t t i n g

< \Dav|oo : \a\ + 2 -\— < p > ,

we h a v e

K := max

where C is independent of v and / .

Proof. For \a\ < p, the derivative Daf(x,v(x)) is a sum of terms

D^D2f(x,v(x))D'7lv...Dakv (3.22)

where

• • • + \<rk\ < P.

If |T| > 1, the estimate of (3.22) proceeds as in the proof of the previous
theorem. If 7 = 0, the factor Daiv ... D°kv is empty, and we use the estimate
D%f(x,v)\ < CB\v\ to obtain

The claim follows. •
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It is now easy to complete the proof of nonlinear asymptotic stability
stated in Theorem 3.1. The term f | | / | |#P dt on the right-hand side of (3.20)
can be bounded as follows:

I e II/IIHP dt < d f ' \\v\\jjP dt < C2 f E \\u\\2
HP+2 dt.

Jo Jo Jo

Therefore, if

2K\e\2C2 < i ,

then one obtains from (3.20)

/ (\\u\\2
HP+2 + \\ut\\

2
HP)dt<3K \\F\\2

HPdt. (3.23)
Jo v ' Jo

Since (3.19) implies (3.23), we can conclude that (3.23) is valid for T£ = oo.
Convergence maxx |tx(a;,£)| —> 0 as t —> oo (and even for v = (u, Du, D2u)
instead of u) follows from

f°° / 2 \

Discussion of the Eigenvalue Assumption
Since P(iu>) = —\ui\2I + C(|w|) for large |o>|, it follows that the Eigenvalue
Assumption (Assumption 3.2) is always satisfied for large \u\. If the Eigen-
value Assumption is violated, there exists u € TLd and cp € Cn with

P{\uj)(j) = \(f>, Re A > 0, 0 ^ 0.

If we set

then ut = Pu + F, but u does not tend to zero as t —> oo. This shows that
the Eigenvalue Assumption is necessary for linear asymptotic stability.

A simple sufficient condition for the Eigenvalue Assumption is

Aj = A), j = l,...,d; B + B*<-26I<0.

In this case, P(iw) + P*(iiv) < B + B* < -261, which implies Re A < -6 for
all eigenvalues A of P(iu>).

Obviously, P(iuj) = B for u = 0. This shows that the Eigenvalue As-
sumption can only be satisfied if all eigenvalues of the zero-order term B
of P have negative real parts. There are cases of interest, however, where
B = 0 or B has a nontrivial null-space. Then it may still be true that
Re A < -6 < 0 for all A € <J{P(IUJ)) if u> € Zd and u ^ 0. Under such a
restricted eigenvalue assumption one can prove a restricted form of asymp-
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totic stability by taking a suitable projection. See, for example, Hagstrom
and Lorenz (1995) for applications.

4. General PDEs: periodic boundary conditions

In this section we consider PDEs of the form

ut = Pu + ef(x,t,u) + F(x,t), xeM.d, t>0, (4.1)

with initial condition

u(x,0) = 0, xeRd. (4.2)

Here P is a linear constant coefficient operator, that is,

p=
\v\<rn

D» = D ? . . . D V / , Dj = J^, \u\ = u1 + ... + ud. (4.4)

As in the previous section, we will assume that F(x,t) and f(x,t,u) are
C°° functions, which are 2?r-periodic in each variable Xj. We seek a solution
u(x,t) with the same spatial periodicity. We will also discuss (4.1) with
more general nonlinearities

f(x,t,u,Du,...,Dru),

where D^u denotes the array of all spatial derivatives of u of order j . As
before, it will be assumed that the nonlinear term f(x, t, v) vanishes for
v = 0 with

v — (u, Du,..., Dru).

Our aim in this section is twofold.

(1) We want to explain the significance of the eigenvalue assumption

R e A < - < 5 < 0 for all A € a{P(iuj)), ueZd
: (4.5)

for the general class of operators (4.3). In fact, as we will show, if the
Cauchy problem for ut = Pu is well posed in L2, the eigenvalue as-
sumption (4.5) always implies a resolvent estimate leading to nonlinear
asymptotic stability of (4.1).

(2) The number r of derivatives of u, which are allowed in the nonlinearity
/ , depends on the resolvent estimate in a simple way. On the Fourier-
Laplace side, one needs a bound

(\cj\q + l)\u(u,8)\<K1\F(u,s)\ forall R e s > 0 , u € Zd, (4.6)

with q > r. If the Cauchy problem for ut = Pu is well posed, then
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(4.6) is equivalent to the eigenvalue condition

ReA< -(\u\q + l)6 <0 for all A € <r(P(iw)), u € Zd. (4.7)

The simple eigenvalue condition (4.5) leads to (4.7) with q = 0. If g is
even and ut = Pu is a parabolic system of order q, then - by the definition
of parabolicity - condition (4.7) is always satisfied for large \u\. In other
words, for parabolic systems of order q, the conditions (4.5) and (4.7) are
equivalent and can be checked, in principle, by computing the eigenvalues
of finitely many matrices P(iuj), LO 6 Zd.

Well-posedness
Let us briefly review the concept of well-posedness in L2 and first consider
the linear problem ut = Pu under an initial condition u(x,0) = UQ(X). We
make a Fourier expansion of the initial data,

uo(x) = 2 . eluJ XUQ(UJ), (4.8)

uezd

and, tentatively, of the solution,

u(x,t) = 2_] eiw'xu{uj,t), (4.9)
we

for each t > 0. Introducing the symbol of P,

\v\<m

and observing that

P(eiw-X4>) = P(IUJ)(J), (f> G C n , (4.11)

we obtain formally

ut(w,t) = P(iLu)u(u,t), u(u,0) = uo(w); (4.12)

thus

u{uj,t) = ep^)tuo{^)- (4-13)

The formal process is justified for t > 0 if the matrix exponentials in (4.13)
have a limited exponential growth rate, which is uniform for all u G Zd.
Well-posedness can be defined accordingly; for details, see Kreiss and Lorenz
(1989), for example.

Definition 4.1 The 27r-periodic Cauchy problem for uj = Pu is well posed
(in L2) if there are real constants K and a with

|eP(iu/)4| < Keat for a l l u € Zd; t > Q ^ 4 1 4 ^
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The Z/2-inner product and norm are defined by

(u,v)= f u*(x)v(x), \\uf = (u,u), u,veL2(T
d,Cn)-

Then, if the 27r-periodic Cauchy problem is well posed and uo G C°°, the
formula (4.9) gives us the solution u(x, t), which is C°° and satisfies

\\u(;t)\\<Keat\\uo\\, t>0.

As usual, boundedness of the assignment UQ —> u(-, t) in L2 implies that we
can obtain a generalized solution for all initial data uo(x) in L2.

Basic resolvent estimate
The following result says that the eigenvalue assumption (4.5) implies a
resolvent estimate, whenever the Cauchy problem is well posed.

Theorem 4.1 Assume that P = '^2\l/\<:rnAl/D
1' satisfies the following two

conditions.

(1) The 27r-periodic Cauchy problem for ut = Pu is well posed, that is,
there are constants a and K with

| ePM*| < Keat for all u G Zd, t > 0.

(2) There is 8 > 0 with

Re A < -8 < 0 for all A <E a(P(iu)), LO G Zd.

Then there is a constant K with

\(sl - ^(ia;))"1! < K for all Res > 0, w e Zd. (4.15)

A main tool for the proof is the Kreiss matrix theorem, which we formulate
next. (See Kreiss and Lorenz (1989).)

Theorem 4.2 Let J7 denote any set of matrices A € C"x", where n is
fixed. Then the following conditions are equivalent.

(1) There is a constant K\ with

\&At\ < Kx for all A e T, t > 0. (4.16)

(2) For all A G T and all s G C with Res > 0 the matrix si — A is
nonsingular, and there is a constant K2 with

\(sl - A)'1] < - ^ - for all A G T, Res > 0. (4.17)
Res
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(3) There are constants K%\, K32 and, for all i e 7 , there is a transform-
ation S = S(A) € Cn x n with \S\ + (5"1! < K31 so that

Ai b\2 i>ln \
0 A2 623 • • • &2ra

••. i (4.18)

An—1 On—l,n

V 0 0 An /
is upper-triangular, the diagonal is ordered,

0 > ReAi > ••• > ReAn,

and the upper-diagonal elements satisfy

\bjk\ <K32\ReXj\, l<j<k<n.

(4) There is a positive constant K4 and, for each A E J7, there is a Her-
mitian matrix H = H(A) € CnXn with

—I <H <KJ , HA + A*H < 0.

Proof of Theorem 4-1- There are constants a > 0, K > 0 with

(4.19)

(PM-a /)i| <
for

By the Kreiss matrix theorem - applied to the family P{iu>) — al, to E
- there is a bounded transformation S = S(u) with

. — a 612 • • • • • • 61 »> \

0 A2 — a 623

5(P(iw) -

and

< Re Aj - a| , j < A;.

Using the assumption Re Xj < — 6 < 0 < a, we obtain that

|Re Xj — a\ = |ReAj|

<

< 2

Re A9

" 3 ~2

ReAj + - (4.20)
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Therefore,

\bjk j < k. (4.21)

Considering S(P{iu) +11)S 1, we obtain from the estimates (4.21) that the
Kreiss matrix theorem also applies to the family P(iu;) + | / , u> G "Ld. Now
we use the second characterization in Theorem 4.2 and find

- l
<

Res
Res > 0.

In particular, this implies the estimate
- l

and the theorem is proved. •

Asymptotic stability of (4.1)
Consider the linear problem

ut = F(x,t), u(x,0) =

and let the assumptions of Theorem 4.1 hold. Fourier expansion and Laplace
transformation lead to the family of linear algebraic equations

(si - P(iuj))u(u,s) = F(u,s), Res>0, u

and (4.15) yields
\u(u,s)\<K\F(u,s)\.

By Parseval's relation this translates into the estimate

\\F(;t)\\2dt.

(4.22)

/•o
/

Jo
/ /
o Jo

Applying this basic inequality to Dau and using ut = Pu + F to estimate
time derivatives, one obtains

f°° / \ f°
/ (||u||^P + \\ut\\

2
HP-m) dt < K2

(4.23)
(Recall that m is the order of P.) If p — m > ^ and the right-hand side
of (4.23) is finite, we obtain a bound for supt \u(-,t)\2. With the same
arguments as in Section 3, this shows linear asymptotic stability.

Theorem 4.3 Let p denote the smallest integer with p — m > ^, and
assume s:
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If P satisfies the conditions of Theorem 4.1, then \u(-, t)\ao —> 0 as t —> oo.

The extension to the nonlinear problem (4.1), where / = f(x,t,u) does
not depend on the derivatives of u, proceeds as before. Formally, we obtain
from (4.23)

L2:= £[\\fH
/•oo t-T

< 2K2 \\F\\2
HPdt + 2K2\e\2 \\ffHPdt. (4.24)

Jo Jo
Here / = f(x,t,u(x,t)). We have (compare (3.17))

max | D a < , i ) | ^ <CL2 i f p > | a | + m + ^ . (4.25)

We estimate ||/||#p by applying the chain rule and have to consider

(See the proofs of Theorems 3.4 and 3.5.) If there are two factors, Dai u and
Da2u, say, which are not dominated in maximum norm by L, then

P<Wi\ + m + - and p < \a2\ + m + - ;

thus

|cr2| + 2m + d <p

Therefore, if we choose p = 2m + d + 1, there can be at most one factor
Daiu that cannot be dominated in maximum norm by L, and one obtains

\\f(;t,u(;t))\\HP<C\\U(;t)\\HP.

By the same arguments as in Section 3 we have proved nonlinear asymptotic
stability.

Theorem 4.4 Let p = 2m + d + 1. If /0°° | |F | |^ P dt is finite and f(x, t, u)
satisfies Assumption 3.1 (with v replaced by u), then |it(-, t)|oo —> 0 as i —> oo
for sufficiently small \e\.

Resolvent estimate gaining derivatives
It is not difficult to generalize Theorem 4.1 as follows.

Theorem 4.5 Assume that the 2?r-periodic Cauchy problem for ut = Pu
is well posed and that the symbols -P(iw) satisfy the following eigenvalue
condition:

ReA< -( |w|9 + 1)<5 < 0 for all A € <r(P(iu;)), w £ Z d ,
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where q is a nonnegative integer. Then there is a constant K with

|(s/ - P(icj))-1! < -r—^-— for all Res > 0, u> € 1d. (4.26)

Proof. The proof, based on the Kreiss matrix theorem, proceeds in exactly
the same way as the proof of Theorem 4.1. Just note that, instead of (4.20),
we have here

\Re\j - a | < 2

a

For the linear problem ut = Pu + F, (4.26) translates into the estimates

/

oo poo

\\u\\2
Hg dt < Ki / \\F\\2dt (4.27)

Jo
and

/ (\\u\\2
HP+q + \\ut\\2

HP+q-m) dt < K2 I \\F\\2
HPdt, p>m-q. (4.28)

Jo v ' J o
The left-hand side of (4.28) bounds sup4 I^O,*)!^ if p + q — m > | , and one
obtains linear asymptotic stability.

Theorem 4.6 Let P satisfy the assumptions of Theorem 4.5 and assume
Jo°° ll-^ilpdt < oo, where p is the smallest integer with p + q — m > | . Then
limt_,oo maxx \u(x, t)\ = 0 if \e\ is sufficiently small.

Nonlinear asymptotic stability when f depends on Du, etc.
Let us assume again that P satisfies the conditions of Theorem 4.5. Thus,
in the linear estimate we gain q derivatives; see (4.27) and (4.28). Recall
that m is the order of P and m > q. (This follows from (4.26) for \u\ —> oo.)
Let the nonlinearity / depend on (x, t, v) where

v = (u,Du,... ,Dru).

We want to explain why one obtains nonlinear stability if

r < q,

but cannot allow r > q, in general. Here we assume, as before, that f(x, t, v)
vanishes for v = 0. More precisely, we require Assumption 3.1 for sufficiently
large p.

In order to control f(x, t, v), we choose p so large that the left-hand side
of (4.28) dominates H2^. Consequently, since v contains Dru, we let p be
so large that

p + q — m>r + -. (4.29)
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(Further restrictions on p will appear below.) Then we have (see (4.28))

[T(\H2
HP+q + \\utfHP+q-m)dt

Jo K '
poo pT

< 2K2 / \\F\\2
HPdt + 2K2\e\2 / \\f\\2

HPdt, (4.30)
Jo Jo

with

/ = f(x,t,v(x,t)).

Denote the left-hand side of (4.30) by L2; thus

dmax Dav(-,t)\zn < CL if p + q — m > \a\ + r H—.
o<t<T 2

We estimate | | / | |HP by applying the chain rule (see the proofs of Theor-
ems 3.4 and 3.5), which leads to the consideration of

||I><71t;...D<Tfc?;|| with |crx| H \-\ak\ < p.

If there are two factors, Daiv and Da2v, say, which cannot be estimated in
maximum norm by CL, then

ii d ii d

p + q - m < \ai\ +r + - and p + q — m < \a2\ + r + ~;

thus

2p + 2q - 2m < p + 2r + d.

Therefore, we choose p so large that (4.29) holds and

p > 2(r-q) + d + 2m.

Under these conditions on p we have

Wf(;tM;t))\\np<C\\v\\Hp, C = C(L). (4.31)

Thus far, no restriction on the relation between r (the number of derivatives
of u in / ) and q (the number of derivatives gained in the resolvent estimate)
has occured. Clearly, ||u||#p « |M|#P+r, and therefore,

I \\ffHPdt<C [ ||«||^+rdt (4.32)
Jo Jo

by (4.31). If r < q and |e| is small enough, we obtain the desired bound

rT roo

/ (\\u\\2
HP+q + \\ut\\

2
HP+q-m)dt<ZK2 \\FfHPdt (4.33)

Jo v ' Jo
from (4.30), and nonlinear stability follows. On the other hand, if r > q and
we substitute (4.32) on the right-hand side of (4.30), the new right-hand



238 H.-O. KREISS AND J. LORENZ

side contains higher derivatives of u than the left; then we cannot obtain a
bound for u.

Let us summarize our result of nonlinear asymptotic stability.

Theorem 4.7 Consider

ut = Pu + ef(x, t, v) + F(x, t), u(x, 0) = 0,

with

v — (u, Du,..., Dru).

Let P satisfy the conditions of Theorem 4.5 with q > r. Furthermore, let
Assumption 3.1 hold for / and let J^° \\F\\fjp dt < oo, wherep = 2m + d+l.
Under these assumptions, lim^oo |i>(-,£)|oo = 0 if |e| is sufficiently small.

Discussion
As noted above, the eigenvalue condition (4.26) is reasonable if ut = Pu
is a parabolic system of order q. In this case Theorem 4.7 states that the
nonlinearity may depend on all space derivatives of u of order < q.

Now consider the hyperbolic equation

Ut = ux — u + F(x, t).

We have -P(i^) = 'no — 1, and the simple eigenvalue condition (4.5) is satisfied
with 6 = —1. However, the resolvent estimate (4.26) is only fulfilled with
q = 0, as the choice s = io; in (4.26) shows. Therefore, by Theorem 4.7,
we may add a nonlinear term sf(x,t,u), but dependency of / on ux is not
allowed.

In the next section we will treat hyperbolic problems in more generality
using the Lyapunov technique. It will become clear that certain nonlin-
earities ef(x,t,u,ux) still lead to asymptotic stability, though the resolvent
technique fails.

5. Hyperbolic problems: periodic boundary conditions

Consider a first-order system

d

j{u)DjU + F{x,t), x <E Rd, t > 0, (5.1)

with initial condition

u(x,O) = uo(x), xeRd, (5.2)

where P is a constant coefficient operator,

d

jDjU + Bu.
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Our main assumption is symmetry, that is,

Aj = A*j, 5 » = B*(u) , j = l,...,d, (5.3)

and negativity of the zero-order term,

B + B* < -261 < 0. (5.4)

Because of (5.3), system (5.1) is called symmetric hyperbolic. The functions
Bj(u),F(x,t), and UQ(X) are assumed to be of class C°°, for simplicity, and
F(x,t),uo(x), and u(x,t) are 27r-periodic in each XJ. In addition, it will be
convenient here to assume that all quantities are real.

As remarked at the end of the previous section, (5.1) cannot be treated
by resolvent estimates, but, as we will see, by the Lyapunov technique.

The basic energy estimate
First consider (5.1) for e = 0. As in Section 2.1, we consider the 'change in
energy' of the solution:

= 2 [u^A3DjU j +2(u,Bu) + 2(u,F). (5.5)

Using the symmetry of Aj, integration by parts, and the periodic boundary
conditions, one obtains

(u, AJDJU) = {AjU, DJU)

= -(AjDjU,u);

thus

(u,AjDju) = 0.

Furthermore,

(u,Bu) = (B*u,u) = (u,B*u);

thus

(u, Bu) = hu, {B + B*)u) < -6\\u\\2.

Equation (5.5) yields

4-\W\\2 < ~28\\u\\2 + 2\\u
at
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and we obtain the basic energy estimate

IK,*)H2 < e-«|KH2 + \ fe-6{t

° Jo
< e-st\\u0\\

2 + 1 max ||F(-,r)||2. (5.6)

This estimate is completely analogous to (2.7).
Clearly, from ut = Pu + F we find Dau = PDau + DaF, and summing

the resulting estimates over all a with \a\ < p, we obtain

\\u(;t)\\2
HP<e-6t\\u0\\

2
HP + ±maxt\\F(;T)\\2

HP, p = 0 , l , . . . . (5.7)

By the Sobolev inequality stated in Theorem 3.3, we can bound |«(-,£)|oo
by ||u(-,t)||ifp if P > 5- Therefore, arguing exactly as in the ODE case in
Section 2.1, we have proved the following result of linear asymptotic stability.

Theorem 5.1 Let P — ]P • AjDj+B satisfy the assumptions Aj = A*- and
B + B* < —261 < 0. Furthermore, assume lim^oo | | F ( - , £ ) | | # P = 0 where p
is the smallest integer with p > | . Then we have lim^oo ^(-jiJIoo = 0.

For the linear problem, we could also have used the resolvent technique if
f™\\F\\2

HPdt were finite.

The nonlinear problem
For the solution of (5.1) we consider again the 'change in energy',

< -<5||u||2 + ±\\F\\2 + 2\£\^2\(u,Bj(u)Dju)\. (5.8)

Using the symmetry of Bj(u), integration by parts, and the periodic bound-
ary conditions, we obtain

(u,Bj(u)Dju) = (Bj(u)u,Dju)
= —(Bj(u)DjU,u) — (Bj(u)(Dju)u, u);

thus

Here

and one finds

\{u,Bj(u)Dju)\ < Ci(l + Hoo)|£>j«|oo||«||2- (5-10)
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We can substitute this estimate into (5.8), but the resulting inequality does
not lead to a bound for ||u||, because |tt|oo and \DJU\OO cannot be bounded
in terms of ||u||.

To obtain an inequality that closes, we consider ^ | |u | |^p for sufficiently
large p. As we will see below, the choice p = d + 2, which we now make, is
sufficient. For \a\ < p, we apply Da to the differential equation (5.1) and
obtain

Daut = PDau + DaF
3

Therefore,

\\DaF\\2+2\\Y\{DaDa{BD))\. (5.11)

By Leibnitz's rule,

Da(BjDjU)=
/3+7=a

with numerical coefficients cap. The most 'dangerous' term occurs for 0 =
0,7 = a. On the right-hand side of (5.11), this term contributes

(Dau,BjD
aDju),

and, if \a\ = p, then p + 1 derivatives are applied to u. However, using the
symmetry of Bj and integration by parts, we can remove one derivative and
find, as in (5.10),

\(Dau,BjD
aDju)\ < Ci(l + HooJIDjuloollD^H2. (5.12)

Now let

101 > 1 , P + l = a, thus | 7 | < p - l ,

and consider

,(D^Bj){D'yDju))\ < \\Dau\\\\(DfiBj)(D'*Dju)\\. (5.13)

Just as in the proof of Theorem 3.4, we apply the chain rule to write
D^(Bj{u(x,t))) as a sum. Then one finds that (D^B^D^DJU) is a sum of
terms

( D Z B j ) D < T 1 u . . . D a k u , 2 < k < p + l,

where

|oiH 1- |crfc| < p + 1 a n d \<Tj\ < p , j = l,...,k.

Here D^Bj is a derivative of Bj(u), and thus

|oo). (5-14)
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It remains to bound

\\Daiu...Daku\\.

By Sobolev's inequality,

I ^ ^ U < C | | « | | H P i f p > H + - .

Suppose there exist two factors, Daiu and Da2u, say, which cannot be
bounded in maximum norm by ||u||#P. Then we would have

P < k i | + - and P<|cr2| + - ,

and thus

2p< \ai\ + |o-21 + d<p+l + d,

in contradiction to our choice p = d+2. We conclude that each factor D^u,
with at most one exception, can be bounded in maximum norm by ||«||#p.
This implies

\\D^u... D°*u\\ < C (l + INI^1) \\ufHP, (5.15)

since 2 < k < p+ 1. To summarize, the inequalities (5.12), (5.13), (5.14),
and (5.15) yield

\(Dau, D^BjDjuVl < C ( l + IMI^1) | |n | |^.

We substitute this bound into the right-hand side of (5.11) and sum over all
a with |a| < p to find

^ \ v + 2\e\C (l + IMI^1) ||W||2HP. (5.16)

The constant C is independent of e and t; it depends on the size of Bj and
its derivatives.

Using the differential inequality (5.16) and elementary ODE arguments,
one obtains the following result of nonlinear asymptotic stability.

Theorem 5.2 Consider (5.1) under the assumptions (5.3) and (5.4). If
limt^oo| | JP(-,i) | | i ?P = 0 for p = d + 2, then lim^oo |K- ,< ) | | J JP = 0 for
sufficiently small \e\. In particular, |u(*,t)loo —> 0 as i —> oo.

Generalizations

It is straightforward to generalize Theorem 5.2 to the case

Bj = Bj(x,t,u)

as long as one has symmetry Aj = A*,Bj = B*,j = 1 , . . . , d. Also, without
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difficulty, a zero-order term ef(x, t, u) with f(x, t, 0) = 0 can be included in
(5.1); more precisely, Assumption 3.1 is required.

The arguments become much more involved if the symmetry assumption
is dropped. Let us explain the difficulty. We start with the linear case, and
assume that

ut = Pu with Pu — \,AjDjii + Bu,

is strongly hyperbolic; that is, for all u € Md the eigenvalues of £\- UJJAJ are
real and semi-simple, and there is a transformation S — S(u) with

|S(w)| + | S - V ) | < const

so that

s
3

is diagonal. If one assumes, in addition, the eigenvalue condition

R e A < - < 5 < 0 for all A e a(P(iw)), u e Zd, (5.17)

then one can use the characterization (4) in the Kreiss matrix theorem (The-
orem 4.2) and construct matrices H = H{u>) with the following properties:

0 < ^ 1 < H(u>) = H*(UJ) < CI;

H(u)P(u) + P*(U)H(LJ) < -6H(LO).

Using the matrices H(LO), which form a so-called symmetrizer, one defines
a new inner product on L^ = L,2(Td, C") by

(U,V)H =

The H-inner product is equivalent to the L2-inner product, and the operator
P becomes negative in the sense that

2(u,Pu)n<-6\\u\\2
n.

(This is the main point of the construction.) For solutions of the linear
equation ut = Pu + F, one then obtains without difficulty

and can derive a satisfactory energy estimate.
However, to treat a nonlinear equation

ut = Pu + e^T Bj(u)DjU + F(x, t),



244 H.-O. KREISS AND J. LORENZ

the construction is not fine enough, even if Bj(u) = B*Au). The difficulty is
that the rule

(Dau, BjDaDju) = (BjDau, DaDjU) (5.18)

is not valid if the Z^-inner product is replaced by the W-inner product,
and a rule like (5.18) - together with integration by parts - is needed to
remove a derivative from the 'dangerous' term DaDjU. For this reason it is
necessary, in general, to refine the construction of H(co) by terms of order
e and to construct a symmetrizer adjusted to the solution of the nonlinear
problem. Details of the construction, which uses elementary properties of
pseudodifferential operators, are carried out in Kreiss, Kreiss and Lorenz
(19986) and Kreiss, Ortiz and Reula (1998c). It is assumed that either the
unperturbed system is strictly hyperbolic or that the eigenvalues of the full
symbol have constant multiplicities.

6. Parabolic problems in bounded domains

Model problem and basic estimate
Consider the parabolic equation

ut = Pu + ef(x,t,u,ux,uxx) + F(x,t), 0 < x < 1, t > 0, (6.1)

where P is the second-order operator

Pu = uxx + a(x)ux + b(x)u.

We require the initial and boundary conditions

u(x, 0) = 0, 0 < x < 1; u(0, t) = ux{l, t) = 0, t > 0. (6.2)

The given scalar functions a(x),b(x),F(x,t) and f(x,t,u,ux,uxx) are as-
sumed to be of class C°°, for simplicity, and compatibility of the data with
the boundary conditions is assumed. The functions f,ft,ftt, and fttt are
required to satisfy Assumption 3.1 with v = (u,ux,uxx) for all sufficiently
large p.

For e = 0, Laplace transformation leads to a family of ordinary BVPs for
u — u(x, s), namely

su = uxx + a(x)ux + b(x)u + F(x, s), 0 < x < 1, (6.3)

u(0,s) = ux(l,s) = 0. (6.4)

A basic observation is that one can always obtain good estimates of u by F,
gaining two derivatives, if Res > 0 and \s\ is sufficiently large.

Lemma 6.1 There are constants C and K, depending only on |a|oo-|-|6|oo,
so that the solution of (6.3), (6.4) satisfies

uxx\\
2<K\\F\\2 (6.5)

if Res > 0 and si > C.
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Proof. Take the L2-inner product of (6.3) with u(x, s) and use integration
by parts to obtain

\ux\\
2 = (u, aux) + (u, bu) + (u, F) =: R.s||u||2

The absolute value of the right-hand side is bounded by

\R\ < 2

Taking the real part of (6.6), we find

Res||u||2 + i | | « x | | 2 < l f i |

Case 1: Res > |Ims|; thus \s\ < y/2Kes.
If Ki < J ^ , we obtain from (6.7)

\S\ ii iio -L II no - n

2v^2
JLZII F

. pz\

thus

Case 2: 0 < Res < |Ims|, thus |s| <
First, from (6.7) and Res > 0 we find

Also, taking the imaginary part of (6.6), we have

and, together with (6.9), we obtain

(6.6)

(6.7)

(6.8)

(6.9)

Recalling that \s\ < \/2|Ims|, we obtain, as before,

|s|2||u||2 < X4||^||2 for \s\ > C,

if C is sufficiently large. Together with (6.9), we have shown that

H2||«||2 + |s|||«x||2</if5||F||2 f o r | s | > C . (6.10)

Since we have proved such an estimate already in Case 1 (see (6.8)), it is
clear that (6.10) is generally valid for Res > 0, \s\ > C. Finally, using the
differential equation (6.3), we can estimate ||uXx|| by .K5(|s|||«|| + ||i
and the lemma is proved. •
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A simple implication of Lemma 6.1 is the unique solvability of the BVP

s4> = P<l> + g(x), 0(0) = <t>x(l) = 0,

where

P<\> = <f>xx + a<t>xt>x

provided that Res > 0, \s\ > C. Here g(x) is any inhomogeneous term. In
particular, it follows that the eigenvalue problem

Pcf> = X4>, <f>(0) = </>x(l) = 0 (6.11)

does not have an eigenvalue A with Re A > 0, |A| > C.
To obtain asymptotic stability, we formulate the following eigenvalue con-

dition.

Assumption 6.1 The eigenvalue problem (6.11) has no eigenvalue A with
Re A > 0.

Remark 6.1 Lemma 6.1 excludes large eigenvalues A with nonnegative
real part but, depending on a(x) and b(x), eigenvalues A with Re A > 0 and
|A| < C can exist, of course. Since one only has to examine a compact A-
region, Assumption 6.1 can be tested with standard numerical procedures.
Also, sufficient conditions for Assumption 6.1 are well known from the max-
imum principle. For example, if a(x) and b(x) are real and b(x) < 0 for all
x or b(x) — ax(x) < 0 for all x, then Assumption 6.1 holds.

Assumption 6.1 together with Lemma 6.1 gives us a strong resolvent es-
timate.

Theorem 6.1 Consider

P(f> = 4>xx + a{x)4>x + b(x)(f), 0 < x < 1.

Then Assumption 6.1 holds if and only if there is a constant K such that

su = Pu + F, u(0,s) = ux(l,s), Res>0, (6.12)

implies
\\u\\H2 < K\\F\\. (6.13)

Proof. First, assuming that the estimate (6.13) holds for all Re s > 0, there
can be no eigenvalue A with Re A > 0; that is, Assumption 6.1 holds.

Second, assume that the eigenvalue problem (6.11) has no eigenvalue A
with Re A > 0. Then, for every fixed s with Res > 0, the BVP (6.12) has
a unique solution, and the estimate (6.13) holds with K = K(s). Further-
more, if s varies in a compact region, the constants K(s) can be chosen
uniformly bounded, as one can prove by a contradiction argument and Ar-
cela's theorem. Therefore, Lemma 6.1 completes the proof. •
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By Parseval's relation (with Res = 0), (6.13) translates into

*)||2dt. (6.14)
/•O

/

Jo

Estimates for derivatives and linear stability
In the case of periodic boundary conditions, we could apply an estimate
like (6.14) directly to Dau since Daut = PDau + DaF. However, in the
present case, the boundary conditions u(0, t) = ux(l,t) = 0 have been used
to derive (6.14), and Dau does not satisfy these boundary conditions, in
general. Instead, we differentiate with respect to t to obtain

utt = Put + Ft.

Let us assume that

ut{x,0) = 0, 0 < x < l . (6.15)

We will show below that this is no restriction. Then we can apply (6.14) to
ut and find

/ \\ut\\hdt<Ki \\Ft\\2M- (6-16)
Jo Jo

Further, if uu{x, 0) = 0, then we can repeat the process and find
/•OO /"OO

/ | M & 2 d t < t f i / \\Ftt\\
2dt. (6.17)

Jo Jo
Since

Utxx = UXxxx r \0iUx)xx > \t>U)xx i i'xxi

it is not difficult to show that (6.14) and (6.16) imply

dt < K

The Sobolev inequality, which we stated in Theorem 3.3 for periodic func-
tions, remains valid without periodicity and, therefore, the estimate (3.17)
applies here. Consequently, the left-hand side of (6.18) dominates

(|u(-,t)lsup(|u(-,t)l«

Using the same arguments as in Section 3, we obtain lim^oo |u(-,t)|oo = 0
if the right hand side of (6.18) is finite.

It remains to show that the assumption (6.15) is not restrictive. To this
end, consider (6.1), (6.2) and make the change of variables

u(x, t) = te~V(x) + v(x, t),



248 H.-O. KREISS AND J. LORENZ

where 4>(x) will be determined. At t = 0 we have

F(x, 0) = ut(x, 0) = <j>(x) + vt{x, 0).

Therefore, if we choose <j>(x) = F(x,0) then we obtain vt(x,0) = 0 for the
new variable.

Nonlinear stability
For illustration, let us assume first that the nonlinearity / in (6.1) has the
form / = f(ux). Proceeding as in Section 3, we consider (see (6.18))

( + IM&2) dt (6.19)

< 2K2

Here

2K2\s\2 £(\\f\\h + WU)t\\2) dt.

= f(ux(x, t)), (f)t = f'(ux(x, t))uxt(x, t).

As noted above, the left-hand side of (6.19) dominates maxo<t<T |̂ a;(">*)lro
and, therefore, the nonlinearity is controlled in maximum norm. Further-
more,

\\uxt\\
2dt

/
Jois also bounded by the left-hand side of (6.19). Using the same arguments

as in Section 3, we find that lim^oo |u(-,£)|oo = 0 if the right-hand side of
(6.19) is finite and \e\ is sufficiently small.

In the general case / = f(x,t,u,ux,uxx) we proceed similarly. After
proper initialization, we have the following generalization of (6.18), restric-
ted to a finite time interval:

L 2 • fT

< K3 £(\\FfH6 + \\Ft\\
2
H4 + \\Ftt\\

2
H2 + \\Fttt\\

2) dt,

The left-hand side bounds sup4 \D
au\2

K> for a < 5. (Here D = d/dx.) To
treat the nonlinear problem, we need to bound

f
Jo
/ o

in terms of L2. Applying the chain rule and expressing any ^-derivative on u
by two x-derivatives (using the differential equation), one needs to consider

\ \ D a i u . . . D a k u \ \ , ax + --- + ak < 8 .
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Since derivatives up to order 5 are controlled in maximum norm by L, one
finds that

\\Daiu...Daku\\2 <C|M|^8.

The remaining arguments are as in Section 3.

Generalizations
It is not difficult to generalize the key result, Lemma 6.1, to the Laplace

transforms of parabolic systems

ut = (A(x)ux)x + B(x)ux + C(x)u + F(x, t) = Pu + F(x, t)

under initial and boundary conditions

u(x, 0) = 0, 0 < x < 1; RQU(0, t) = Riu(l, t) = 0, t > 0.
Here A(x),B(x), and C(x) are smooth matrix functions, and parabolicity
requires

A{x) = A*(x) >aI>0.

We also assume that the boundary conditions RQU = R\u = 0 imply

(u, Aux = 0.
o

(This boundary term appears when (u, (Aux)x) is integrated by parts.) In
particular, one can use a Dirichlet or Neumann condition. Under these
assumptions, one obtains that a strong resolvent estimate

\\u\\H2 <K\\F\\ for all Res > 0

holds if and only if the eigenvalue problem

P(f> = \(/>, Ro<p = Ri4> = 0,

has no eigenvalue A with Re A > 0. The arguments are the same as in the
proof of Theorem 6.1. Again, the eigenvalue condition can be tested numer-
ically since the existence of large eigenvalues A with Re A > 0 is excluded by
analytical arguments.

7. PDEs on all space with negative zero-order term

The purpose of this section is to extend the results of Sections 3, 4 and 5
from the case of periodic boundary conditions to problems on all space. The
extension is easy, because the constant coefficient operator P is assumed to
have a 'negative' zero-order term. This allows us to obtain a resolvent
estimate that is valid uniformly up to Res = 0. For hyperbolic problems,
the zero-order term leads to exponential decay. Equations without such a
zero-order term are treated in Section 8.
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7.1. Problems on all space with strong resolvent estimate

Consider a Cauchy problem

ut = Pu + ef(x,t,u,Du,...,Dru) + F(x,t), x G Rd,t > 0 (7.1)

with homogeneous initial condition

u(s,0) = 0, xeRd. (7.2)

As in Section 4, the operator P has constant coefficients

p = ^ AVD", Av € C n x n . (7.3)

\u\<m

The functions F(x, t) and f(x, t, v) with

v = (u, Du,..., Dru)
are assumed to be of class C°°, for simplicity. Furthermore, let f(x, t, 0) = 0;
more precisely, we require Assumption 3.1 with a sufficiently large p. For
the function F(x, t) we assume8

\\DaF(-,t)\\ < oo, for all a, t > 0,

and

for a sufficiently large p.
We will always assume that the Cauchy problem ut = Pu, u(x, 0) = UQ(X),

is well posed in L2, that is, there are constants K and a with

<Keat for all u G Rd, t>0.

(See, for example, Kreiss and Lorenz (1989) for a discussion of well-posedness
in L2•)

For e = 0, Fourier transformation in x and Laplace transformation in t
yield the family of linear algebraic equations

SU(UJ, s) = P(IUJ)U(LO, S) + F(u, s). (7.4)

Here the Fourier-Laplace transform of u is

/

oo r
/ e-st-'lu}Xu(x,t)dxdt.

As in Section 4, an eigenvalue condition for the symbols P(iw) leads to a
strong resolvent estimate.

8 The Z/2-inner product and norm are now defined by (u, v) = /Rd u*(x)v(v) dx, \\u\\2 =
(u, u), i.e., the domain of integration is Rd instead of Td.
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Theorem 7.1 Assume that the Cauchy problem for ut = Pu is well posed
and that there are constants q G {0,1, . . .} and 6 > 0 with

< -(\io\q + l)6 <0 for all A e a(P(iuj)), to eReA

Then there is a constant K with

sI
X"1 K A

-P(iw)J < |— for all w e i r , Res>0. (7.5)

Proof. The proof, based on the Kreiss matrix theorem, is the same as
the proof of Theorem 4.5. The essential argument is given in the proof of
Theorem 4.1. One only has to replace u <E 1d by LO <E M.d. •

Given that P satisfies the assumptions of Theorem 7.1, one obtains from
(7.4)

K
 \F(LJ,S)\ for all w e Rd, R e s > 0 . (7.6)

Then Parseval's relation (with Re s = 0) yields

/ H-,t)||^dt<iiri /
Jo Jo

We can apply this estimate to Dau and can also obtain bounds for ut and
Daut using the differential equation ut = Pu + F. Therefore,

/•oo

< Jf2 / \\F(-,t)\\2
HPdt, p>m-q. (7.7)

(Here m is the order of P.) The Sobolev inequality, which we formulated
in Theorem 3.3 for periodic functions, is also valid for u G Hp(M.d). Con-
sequently, the left-hand side of (7.7) dominates

sup|L>Qu(-,t)|^ if p + q-m> |a| + - .

In exactly the same way as we have proved Theorem 4.7, we obtain the
following result.

Theorem 7.2 Consider the problem (7.1), (7.2) and assume that P sat-
isfies the conditions of Theorem 7.1 with q > r. Furthermore, let Assump-
tion 3.1 hold for / and let /0°° | |F | |^ P dt < oo, where p = 2m + d+l. Under
these assumptions lim^oo |t>(-,i)|oo = 0 if |e| is sufficiently small. (Here
v = (u,Du,...,Dru).)
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7.2. Hyperbolic problems on all space

Consider a first-order system

d

ut = Pu + eY^Bj(u)DjU + F{x,t), x<=Rd, t > 0, (7.8)
i=i

with initial condition

u(x,O) = uo(x), xeRd. (7.9)

Here P has constant coefficients,

d

jDjU + Bu.

We assume symmetry,

Aj = A * , B3{u) = B * { u ) , j = l,...,d, (7.10)

and negativity of the zero-order term,

B + B*<-26I<0. (7.11)

The functions Bj(u), F(x, t), and UQ(X) are assumed to be of class C°° and,
for convenience, all quantities are assumed to be real. Furthermore, let

\\U0\\HP<OO, \\F(-,t)\\HP < OC for a l l p = 0 , 1 , . . . a n d a l l t > 0.
(7.12)

Under these assumptions, one knows local (in time) existence of a C°° solu-
tions u(x,t), and this solution satisfies

|K-,t)| |ffp<oo, p = 0 , l , . . . . (7.13)

in its interval of existence. (See, for example, Kreiss and Lorenz (1989).)
To discuss stability, we first let e = 0. Consider the 'change in energy',

1 d 2

- - H = (u,ut)
, AjDju) + (u, Bu) + (it, F).

Using the symmetry of Aj and integration by parts, one finds that

(u,AjDju) = (AjU,Dju) = -(AjDjU,u),

and therefore (u, AJDJU) = 0. When one integrates by parts, boundary
terms appear. However, these terms are zero, since the solution u decays to
zero for \x\ —• oo. This follows from (7.13). For this reason, all arguments
used in the spatially periodic case in Section 5 can be used here in the same
way. Instead of Theorem 5.2 one obtains the following result.
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Theorem 7.3 Consider the symmetric hyperbolic system (7.1) with initial
condition (7.2) under the assumptions described above. Also, for p = d + 2
we assume /0°° | |F | |^ p di < oo. Then we have limt-xx, |it(-,i)|oo = 0 if |e| is
sufficiently small.

The generalizations outlined at the end of Section 5 can also be made in
the all-space case. The only difference is that one has to work with Fourier
integrals instead of Fourier sums. In particular, if H(u) denotes a bounded
symmetrizer satisfying

H(u)P(iu) + P*(iuj)H(u) < -

then the W-inner product becomes

(u,v)-n= / U*(LU)H(LO)V(UJ) du.

With respect to this inner product, the linear operator P is negative:

(u,Pu)H + (Pu,u)H<-8\\u\\2
n.

Perturbed hyperbolic systems

ut = Pu + e'Y] Bj(x, t, U)DJU + F(x, t),

3

which are either strictly hyperbolic or whose full symbol

jB(j(x,t,u), \u\ = 1,
3 3

has eigenvalues with constant multiplicities, can again be treated by con-
structing a norm adjusted to the solution.

8. Parabolic problems on all space with weak resolvent
estimate

In this section we consider viscous conservation laws of the form
d d

ut = Pu + elPiu + e2^Djfj(u) + Y^DjFj(x,t), xeRd, t > 0, (8.1)
3=1 3=1

with homogeneous initial conditions

it(a;,O) = O, z e R d .

Here, the operator P has constant coefficients, that is,

d

Pu = A + Y^ AJDJU, Aj e Rnxn. (8.2)
3=1
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The term e\Piu describes linear perturbations with variable coefficients, so
that,

d

Plu = J2Dj(Bj(x,t)u), (8.3)
3=1

and the nonlinear functions fj(u) vanish quadratically at u = 0. Note that
all terms on the right-hand side of (8.1) are derivative terms, that is, (8.1) has
conservation form. In particular, the constant coefficient operator P does
not have a negative zero-order term, and therefore the results of Section 7
do not apply here. The aim of the section is to show that the resolvent
technique can still be used, but one needs more specific assumptions about
the form of the perturbation terms. Let us list our assumptions for the terms
Bj(x,t), fj(u), and Fj(x,t) appearing in (8.1).

Assumption 8.1

(1) Fj(x,t),Bj(x,t), and fj(u) are of class C°° and

/i(0) = 0, Dfj(0) = 0;

(2) / / \F(x,t)\dxdt< oo;
Jo JR*

/•oo

(3) / \\F(-,t)\\2
HPdt<oo, p = 0 , l , . . . ;

Jo

/•oo

(4) / ||£(.,*)||2d*<oo;
Jo

(5) sup \DaB(x,t)\ < oo for all a.
x,t

Our standard form (8.1) together with these assumptions and homogen-
eous initial conditions might seem very restrictive, but one can often enforce
the requirements by simple transformations. Let us illustrate this.

8.1. Transformation to standard form

Consider a system

Djfj(u) (8-4)
3=1

of viscous conservation laws, where P has the form (8.2) and where the flux
functions fj : E n —> Rn are of class C°° and vanish quadratically at u = 0.
Clearly, u = 0 is a solution of (8.4), and we are interested in its asymptotic
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stability in the sense of Lyapunov; that is, we consider (8.4) with small
initial data

u{x,0) = eUo(x), xeRd. (8.5)

Conditions on UQ(X) will be derived below. For simplicity, let us assume that
the flux functions fj(u) are quadratic; that is, there are symmetric bilinear
functions Q3 : I n x R n - > l R " with

fj(u) = Qj(u,u).

(If Hjk G R"x n is the Hessian of the A;th component of fj at u = 0, then
(Qj(u,v))k = \vlHjkU.) If we write u(x,t) = ev(x,t), then (8.4), (8.5)
becomes

d

vt = Pv + eJ2 Djfjiv), v(x, 0) = UQ{X). (8.6)
.7 = 1

To derive estimates by Laplace transformation, it will be convenient to ini-
tialize first. To this end, we introduce a new variable w(x, t) by

v(x, t) = Q~tUo{x) + w(x, t),

for which we obtain

w(x,0) = 0. (8.7)

Setting

v(x,t) — eTtUo{x)

we find that the function w(x, t) satisfies

d

wt = Pic + e 2 J Djfj(v + w) + Pv — vt,
i=i

where

fj{v + w) = fj(v) + fj(w) + 2^(15, w).

Thus we can write
d d

wt = Pw + eY^ Dj(Bj(x, t)w) + e ]T Djfj(w) + G(x, t)
3=1 3=1

with
d

G = Pv-vt + eYJDjfj{v)
3=1

and matrices Bj(x,t) determined by

Bj(x,t)w = 2Qj(v(x,t),w).
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If we now assume that the initial function UQ(X) has the form

d

where UQj G C°° and

DaUoj G Li n L ^ for all a,

then our construction shows that the inhomogeneous term G(x,t) can be
written as

d

where Fj G C°° and DaFj G Li n L ^ for all a. Therefore, u;(x, i) solves
equation (8.1). Also, it is not difficult to show that Assumption 8.1 is
satisfied.

8.2. Estimates for the unperturbed problem

Consider the linear equation

d

ut = Pu + Y^ DJFJ(XI *)> xeRd, t>0, (8.8)
3=1

with initial condition

u(x,0) = 0, xeRd. (8.9)

Here P = A + Yl • AjDj, and the Fj(x, t) satisfy the relevant conditions of
Assumption 8.1. We also require the following.

Assumption 8.2 The system Ut = ̂  • AjDjU is strongly hyperbolic; that
is, for all u G M.d the eigenvalues of ̂  • UjAj are real and semi-simple, and
there is a transformation 5 = S(u) with

ISVJI + IS"1^)! < const

so that

S ^

is diagonal.

Fourier-Laplace transformation of (8.8) yields

su(u,s) = P(iuj)u(uj,s) + i'^2ojjFj(uj,s), (8.10)
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with

P(iio) = -\u;\2 + i

The following technical lemma contains a crucial estimate of the resolvent
Of P(lLj).

Lemma 8.1 There is a constant C\, independent of w e Krf and 77 > 0,
with

1-2 (8.11)

Proof. Let s = 77 + i£, 77 > 0. Using the transformation 5 = S(ui) of
Assumption 8.2, we have

S{sl - P)S~1 = (s + \co\2) I - iA,

where A = diag(Afc), Â  G R. Therefore,

" 1 (8.12)\ - i

Clearly, for 77 > 0 and LJ 7̂  0,

- *k) J-c
= TT\LU

- 2

This proves the lemma. •

We use the abbreviation

M(F,T)= ( f t \F(x,t)\dxdt)

for the square of the Li-norm of F over space and the time interval 0 < t <
T. Recall that M(F, 00) is finite by Assumption 8.1. Prom the definition of
the Fourier-Laplace transform, we obtain directly

\F(to,s)\2 <M(F, 00) for all ue Rd, Res>0. (8.13)

Therefore, using (8.10),

U(LO,S) - 1(Sl-P)

< M(F,oo)\u\

\UJ F(u,s)

(8.14)

We now apply Parseval's relation (see (2.21)) with 77 = 0 to obtain
roo 1 /»oo

/ \u(u,t)\2dt = — / \u(u,,iO\2<%
JO 2 7 r J-oc

< C2M{F,oo), ueM.d. (8.15)
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In the last estimate we have used (8.14) and (8.11). The bound (8.15) will
give us the crucial estimate for the small-w projection of the solution.

Definition 8.1 Let u = u(x),x £ M.d, denote an Z/2-function with Fourier
transform U(UJ). Let u(u) = u1 (to) + un(io), where

u1(LU) = U{UJ) for |u;| < 1, u1 (u) = 0 for \LO\ > 1,

and let u1(x) and un(x) denote the corresponding inverse Fourier trans-
forms. We call u1 and u11 the small-u; and the large-w projections of u,
respectively.

A similar notation, u7 '7 / (x,i) and n/)/7(a;, s), will be used for functions
u(x, t) and their Fourier-Laplace transforms. Note that the time variable t
and the dual variable s are irrelevant for the projections. Also, if u(x,t) is
a smooth function with derivatives in L2, then differentiation and projec-
tion commute, because differentiation corresponds to multiplication on the
Fourier side, which clearly commutes with cut-off. In particular, one obtains

iV.s)! < \ur(uj,s)\. (8.16)

Theorem 8.1 Let u(x,t) solve (8.8), (8.9), and recall Assumptions 8.1
and 8.2. For any p — 0 , 1 , . . . , there exists Cp, independent of F and T, with

£(\W\2
HP+i + NI&P- I ) dt < Cp (M(F,T) + £ \\FfHPd?j . (8.17)

Proof.

(1) We first estimate u1. By Parseval's relation we have

l\u>\<l

Integrating this equation in time and observing (8.15), we find
/•oo

/ ||?/(-,£)||2d£ < C M ( F , oo).
Jo

By (8.16) we obtain the same estimate for every derivative D Q i / .
Therefore,

/•oo

/ | | 7 / | | ^ P d i<C p M(F ,oc ) , p = 0 , l , . . . . (8.18)
./o

(2) The estimate of the large-w projection u11 proceeds like the estimates
in Sections 3 to 5. First note that (8.12) implies

(M2 + l) (sI-P{iu)\ u\ > 1, rj>0.
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Therefore,

/•OO /"OO

/ \\unfHP+1dt<Cp / \\F\\2
HPdt, p = 0 , l , . . . . (8.19)

Jo Jo

(Note that we only gain one derivative, because F appears in differen-
tiated form as forcing.) Together with (8.18) we have derived

/•OO / /-CO \

jf \\u\\2
HP+1dt<Cp\M(F,oo) + J \\F\\2

HPdt), p = 0 , l , . . . .
(8.20)

To estimate time derivatives, we use the differential equation. Clearly,

Daut = PDau
j

yields

Together with (8.20), the estimate (8.17) follows for T = oo. Since
values of F(x, t) for t > T do not affect the solution u(x, t) for t <T,
it follows that (8.17) also holds for all finite T. •

Remark 8.1 Suppose the inhomogeneous term in (8.8) is a general func-
tion

x[0,oo)),

that is, we do not assume the structure G = J2j DjFj. Then we still have

\G(u,s)\2 <M(G,oo) < oo, cj£Rd, R e s > 0 .

Therefore, u = (si — P)~1G and Lemma 8.1 yield

/

oo i roo

2?r J-oo
< CM(G,OO)\UJ\~2. (8.21)

In one and two space dimensions,

/ |a;|~2du; = oo,
J\UJ\<1

and consequently we cannnot obtain a bound of /0°° Ht^H2 dt from (8.21).
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However, if the number of space dimensions is d > 3, then

"2du,/
J\w'M<i

is finite, and (8.21) yields
/•o

/

Jo
/

Jo
For this reason, the structural assumptions on the forcing and the perturb-
ation terms in (8.1) can be relaxed for d > 3.

By (3.16), the left-hand side of (8.17) dominates maxo<(<r |w('>*)loo if
p — 1 > ^. With the same arguments as in Section 3, linear asymptotic
stability follows.

Theorem 8.2 Consider (8.8), (8.9) under Assumptions 8.1 and 8.2. Then
we have lirat-^oo |it(-,£)| = 0.

8.3. Stability for the perturbed problem

Consider (8.1) with initial condition u(x,0) = 0 and recall Assumptions 8.1
and 8.2. We want to show asymptotic stability, if e\ + e\ is small enough.
The basic idea is the same as in Section 3: We use the linear estimate of
Theorem 8.1 with F replaced by

F(x, t) + £lJ2 BAxi t)u(x> t)+^J2 /i("(x' *)). (8-22)
j j

that is, we treat the perturbation terms as forcings.
To be specific, let p = d + 3 and let Cp be fixed with (8.17). For all ei,£2

there exists T = T(ei,E2) SO that

< 4CP (M(F, OO) + ^°° \\F\\2
HP d?j =: R2. (8.23)

By (3.17), we have

m a x \ D a u { - , t ) \ 2
o o < L 2 i f p -

0<t<T ~

From (8.17) (with F replaced by (8.22)) we find

(8.24)

,T)+ I \\F + exBu + e2f(u)\\2
HP dtj .
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Here

M{F + £lBu + e2f(u),T) < 2M(F,T) + Ae\M{Bu,T) + 4e2M(/(n),T)

and

| | F + £ l B u + e2f(u)\\2
HP < 2\\F\\2

HP + 4 e ? | | J B u | | ^ + 4 | ^

and it remains to show that the quantities

M(Bu,T), M(f(u),T), / \\Bu\\j,,, / ||/(«)||^p
Jo Jo

can be estimated by KRL2, with a constant KR depending only on the
(fixed) right-hand side of (8.23). Firstly,

M(Bu,T) < ( I [ \B(x,t)\\u(x,t)\dxdt]
\Jo JRd J
rT r rT

< \B\2dxdt / ||u||2di
Jo Jud Jo

< CBL2,
where we have used Assumption 8.1. Secondly, since / vanishes quadratic-
ally at u = 0 and \u(x,t)\ < L < R, we have \f(u)\ < CR\U\2. Therefore,

(fT r \ 2

M(f(u),T) = (I l\f(u(x,t))\dxdt\

< C2
R( f f \u\2dxdt]
\Jo JRd

Thirdly, by Leibnitz's rule,

Da(BjU) = ^2ca0(D
a-'3I

/3<a

thus

\\Bu\\2
HP<CB\\u\\2

HP

if we observe Assumption 8.1. This implies

\\Bu\\2
HPdt<CBL2.

o

/
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Finally, a bound

/ \\f(u)\\2
HPdt <C(R)L2

o

is shown exactly as in Section 3. (See Theorems 3.4 and 3.5.) These argu-
ments prove that there is a constant KR, independent of T and ei and £2,
such that

L2 := £(\\u\\2
HP+1 + ||«t||2n,_1)dt

< 2CP (M(F, 00) + r \\F\\2
HP dt\ + KRL2 (e\ + efj . (8.25)

If we choose e\ + e\ so small that

then (8.25) implies

/ (IMIHP+1 + lkllL>-0 dt < 3Cp (M(F, 00) + /°° ||F|&P dt) .
Jo y ' \ Jo J

The remaining arguments are as in Section 3.

Theorem 8.3 Consider (8.1) with initial condition u(x,0) = 0 and recall
Assumptions 8.1, 8.2. If el + e\ is small enough, then lim^oo |«(-,i)|oo = 0.

9. Half-space problems with strong resolvent estimate

Let Tld denote the half-space

•Hd = {x = ( x i , x2, ...,xd): x e Rd, x i > 0}

with boundary

dnd = {x € nd : xi= 0} .

As a model problem, we consider the scalar parabolic equation
d

Ut = Au + \_. CLjDjii + bu + G(x, t)

G{x,t), xeHd, t>0, (9.1)

with initial condition

u(x,0) = 0, xeHd, (9.2)

and Dirichlet boundary condition

u(x, t) = 0, xe dHd, t > 0. (9.3)
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In (9.1) the coefficients a\,..., a<j, and b are real constants, and G(x, t) is a
smooth function, which decays sufficiently fast for \x\ —> oo and for t —> oo.
Also, it will be assumed that G(x, t) and the initial and boundary conditions
are compatible at (x, t) = (0,0). It is sufficient, but not necessary, that G
is of class C°° and has compact support in Hd x (0, oo).

As in the previous sections, we will derive estimates of u in terms of the
inhomogeneous term G. Then the form of the estimate will tell which type
of nonlinear perturbation can be added. As we will see, the stability of the
problem (9.1), (9.2), (9.3) depends crucially on the sign of b. If b > 0, the
problem is unstable. If b < 0, the case treated in this section, one can derive
a strong resolvent estimate. The case b = 0 is more intricate and is treated
in the next section.

We remark that the maximum principle can be applied to the scalar equa-
tion (9.1) and also to nonlinear perturbations of it. While this principle is
very useful for scalar problems, it does not apply to systems of equations in
a natural way. In contrast, the approach we present here can be generalized
to systems.

Proceeding formally, we Fourier transform in the tangential variables

and Laplace transform in t to derive a family of ordinary BVPs on the
half-line 0 < x\ < oo. Using the notation

/•oo/•oo r

/ / e-st-i"x-u(xl,

LO = (io2,...,ujd)eM.d~1, R e s > 0 ,

we obtain
d

•>2~su = D-^u — \UJ\ u + a\Diu + i2^WjajU + bu + G(XI,LJ,S),

3=2

that is,
D\u + aiDiu - au = -G(xi,u,s) (9.4)

with
d

G = s + \u\2 — \p — b, p = ^^LUjdj. (9.5)
3=2

The boundary condition (9.3) transforms to

u(0, u,s) = 0, u G M^"1, Re s > 0. (9.6)

In Section 9.1 we present some elementary results on ordinary BVPs of the
type (9.4), (9.6).
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9.1. Auxiliary results on BVPs on the half-line

To simplify notation, we write x instead of x\, a instead a\, u instead of u,
and F(x) instead of -G{xi,u,s). Then the BVP (9.4), (9.6) reads

uXx + o,ux — au — F(x), 0 < x < oo; ^(0) = 0. (9-7)

Before discussing (9.7), we look at even simpler first-order equations.

Lemma 9.1 Let Re A < 0 and consider

ux = Xu + F(x), 0 < x < oo,

where9 F G C fl L,2- The general solution

u(x) = eXxu(0) + fX ex(x-^F(O d£ (9.8)
Jo

satisfies the estimate

l l^ l l 2 < C7A(|^(O)|2 -h H^l

with a constant C\ independent of u(0) and F.

Proof. For ui(x) — eXxu(0) we have

Let U2(x) denote the integral term in the general solution. Applying the
Cauchy-Schwartz inequality, we find

< "eXIJo|ReA|

Therefore,

|ReA|2

The estimate of ||u||2 follows from ||u||2 < 2||tti||2 + 2||u2||2. •

9 The condition of continuity, F € C, can be dropped here and in the following if one
works with weak derivatives of u instead of classical derivatives.
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Lemma 9.2 Let Re A > 0 and consider

ux = Xu + F(x), 0 < x < oc,

where F G C D L2- There is a unique solution in L2, namely

u(x) = - / ° ° e A ( x ^ ) F ( O d ^ . (9.9)
Jx

This solution satisfies

Ml < j ^ 2 ^ ^

Proof. If u is given by (9.9), then the estimate of ||n|| follows as in the
proof of the previous lemma. Also, the bound for \u(0)\ follows from the
Cauchy-Schwartz inequality.

The general solution has an additional term eAxc, but it is clear that (9.9)
is the only solution in L2. •

In the discussion of (9.7), the roots Ai^ of the characteristic equation

A2 + aA-cr = 0 (9.10)

will be important. We show the following elementary result.

Lemma 9.3 Let a G R and let Rea >0,a^0. Then the roots of (9.10)
satisfy

ReAi < 0 < R e A 2 .

Proof. Clearly, Ai + A2 = —a, A1A2 = —u. Suppose a root Ai = \a is purely
imaginary. Then a ^ 0 since a / 0 . However, A2 = —a — ia, thus

ReAiA2 = a2 = -Rea < 0.

This contradiction shows that no root can be purely imaginary.
Now let

Ai — x\ + ia, A2 = £2 — ia, Xj,a € M..

Then

Re A1A2 = X1X2 + a2 < 0

implies £1X2 < 0. Our previous argument shows Xj 7̂  0, and the assertion
follows. •

Using the previous three lemmas, it is straightforward to obtain the fol-
lowing result for the BVP (9.7).

Theorem 9.1 Consider (9.7) with

aeR, Reo->0, a ^ 0, F e C D L2.
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The problem has a unique solution t i e C 2 with u,ux,uxx £ L2> and there
is a constant Ca,cr, independent of F, with

\\u\\H2<Ca,a\\F\\. (9.11)

Proof. Using the variable v = ux + au, we can write (9.7) as a first-order
system,

: ) . - ( ? * ) ( : ) • ( * ) •
The eigenvalues Ai,2 of the system matrix, which we call A, are the roots
discussed in Lemma 9.3, and there is a transformation Q with

Q~lAQ = A = diag(Ai,A2).

In fact,

(Xl

In the variables V = (Vi, V2)T determined by

the system (9.12) becomes diagonal,

We can now use Lemmas 9.1 and 9.2 to construct and estimate an L2-
solution. Note that the boundary condition u(0) = 0 transforms to

AiFi(0) + A2V2(0)=0. (9.13)

By Lemma 9.2 the unique ^-solution of V2X — A2V2 + i/2 satisfies

||F2||
2 + |F2(0)|2 < Cil l^f , d = d(A2).

Using Lemma 9.1 and (9.13) to estimate Vi, we obtain

or, in the original (u, u)-variables,

Since v — ux + au and since we can use the differential equation to estimate
uxx, the inequality (9.11) follows. Clearly, by subtraction, (9.11) also yields
uniqueness. •

For later reference, let us note that the Sobolev inequality (2.30) implies

sup f|u(x)|2 + \ux(x)\2) < 2 / (\u(x)\2 + \ux(x)\2 + |nxx(x)|2) dx,
x>x 0

V ' Jxo V '
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and, by (9.11), the right-hand side tends to zero for XQ —• oo. Therefore,
the solution u(x) constructed in Theorem 9.1 satisfies

lim (\u(x)\ + \ux(x)\) = 0. (9.14)

9.2. Resolvent estimate for b < 0

In this section we assume that the coefficient b in the parabolic equation
(9.1) is negative. Recall the family of BVPs (9.4), (9.6) derived by Fourier-
Laplace transformation, where the ODE (9.4) depends on the parameter

d

a = s + \LO\2 — \p — b, p = y^^Ujdj.

3=2

If s = 7] + i£, r\ > 0, then the parameter a satisfies

|cr|2 = (77 + \u\2 - bf + (£ - p)2 > (\LO\2 + |6|)2 > b2 > 0 (9.15)

and

R e a > - 6 > 0 . (9.16)

In particular, Theorem 9.1 applies to each BVP (9.4), (9.6), and one finds

||u(-,w,«)||Ha <Ca,ff||G(-,u;,s)|| for all w e R ^ 1 , R e s > 0 . (9.17)

We now use the BVP (9.4), (9.6) - or, in other notation, the BVP (9.7) -
directly to sharpen the estimate and to make the dependency on \a\ explicit.
This will then allow us to apply Parseval's relation.

Theorem 9.2 Consider the BVP (9.7) with

fl£l, Recr>0, CT/0, F € C n L2,

and let u denote the #2-solution constructed in Theorem 9.1. There is a
constant K, independent of o, a, and F with

I«**II2 + MKII2
a u\\*<K[l + ?-) \\F\\2. (9.18)

\°~
Proof. Multiply (9.7) by u(x) and integrate over 0 < x < oo to obtain

(u, uxx) - a(u, ux) - o-\\u\\2 = (tt, F).

Integration by parts yields

- | K I | 2 - a(tt, ux) - a\\u\\2 = (u, F). (9.19)

(Note that the boundary terms are zero because of (9.14) and u(0) = 0.)
Taking the absolute value of the real part of (9.19) one finds that

(9.20)
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\\UX\\2<\\U (9.21)

Case 1: Re<7 > |Imcr|, thus \a\ < \/2Ilea.
In this case, (9.20) yields

and thus

Also, from (9.7),

\a\\\u\\ < V2\\F\\.

\\uxx\\ < |a|||ux|| + H||u||

Combining this with estimates (9.21) and (9.22), one obtains

(9.22)

(9.23)

2lL.I|2
or u <K 1 +

Case 2: 0 < Re a < |Imo-|, thus \a\ < \/2\Ima .
Taking the absolute value of the imaginary part of (9.19), one finds that

1 2

In the last estimate (9.21) has been used. From (9.24) we obtain

4=lo-|llu|l <

and, therefore,

HIHI a

CM Pi-
Combining this with (9.21) and (9.23), the desired bound (9.18) follows. •

The derivation of a strong resolvent estimate is now straightforward. We
apply Theorem 9.2 to each BVP (9.4), (9.6) and recall

Therefore,

\b\ > \b\

l)\\uXl(-,u;,s)
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By Parseval's relation we obtain the following result. (Note that the factors
\UJ\2 + 1 provide estimates for derivatives in the tangential directions.)

Theorem 9.3 Consider the half-space problem (9.1), (9.2), (9.3) with 6 <
0. There is a constant C, which is independent of G, such that

roo roo

J \H;t)\\2
H2{Hd)dt<Cj \\G(;t)\\l2{nd)dt (9.25)

for all G G L2{Hd x [0,oo)).

Remark 9.1 In our derivation of (9.25) we have used more regularity for
G than G € £2- However, by applying a simple approximation argument, it
is clear that the assumption G € L2(Hd x [0, 00)) suffices.

With the same arguments as in Section 6, one can extend the basic es-
timate (9.25) if G is sufficiently regular and sufficiently high compatibility
conditions are satisfied at (x,t) = (0,0). For example, we have

utt = Put + Gt

and, if G(x, 0) = 0, then ut = 0 at t = 0. Therefore, (9.25) yields an estimate
of ut and its second space derivatives. Using the differential equation

Aut = AAu + ...,

one obtains estimates for the fourth space derivatives of u, etc. As explained
in Section 6, one obtains nonlinear stability for a general perturbation term
ef(x,t,u,Du,D2u) added to (9.1).

10. Half-space problems with weak resolvent estimate

In this section we consider the parabolic initial-boundary value problem
(9.1), (9.2), (9.3) with 6 = 0. Let us recall the family of ordinary BVPs on
the half-line 0 < x\ < 00, derived by Fourier-Laplace transformation:

D\u + a\Diu - au = -G(xi,u,s), U(0,UJ,S) = 0. (10.1)

The differential equation depends on the parameter a,

d

a = s + \u>\2 - \p, p = ^2u>jaj, w £ l ( i " 1 , Res > 0. (10.2)
3=2

If one tries to extend the results of the previous section, where we had
assumed b < 0, to the case 6 = 0, one faces the difficulty that the crucial
estimate of Theorem 9.2 becomes useless for \a\ ft! 0. In the previous section
we had |CT| > |6| > 0, but if 6 = 0 then a becomes zero for s = 0, UJ = 0.

This problem is not just technical. In fact, to obtain linear stability, one
is forced to make more restrictive assumptions on the inhomogeneous term
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G(x, t) than smoothness and G € L2(Hd x (0, oo)). As in Section 8, we will
assume

d

G(x, t) = ^2 DjFj(x, t), x£Hd, t > 0, (10.3)

where the Fj are C°° functions and Fj <E L\(Hd x (0, oo)).
Note that the Fourier-Laplace transform of (10.3) is

^ (10.4)
=2

Several technical estimates are given next.

10.1. Further auxiliary results on BVPs on the half-line

In this section we use the notation
/•oo/•oo /-o

= / |u(x)|2dx, 11 ix || x = /
Jo Jo

for the L2-norm and the Li-norm. We start with estimates for solutions of
the first-order equation ux = Xu + F(x).

Lemma 10.1 Let Re A < 0 and consider

ux = Xu + F(x), 0 < x < oo, (10.5)

where F G C D L\. The general solution (9.8) satisfies the estimate

Hull2 <
|ReA|

Proof. For the integral term U2(x) in the general solution we have

\u2(x)\< f
Jo

and, therefore,
/•CO

= / \u2(x)\2dx
Jo

/•oo poo
< \\F\U / / e

Jo Je

n
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Lemma 10.2 Consider (10.5) with Re A > 0, F <E C f l L i . The unique
L2-solution (9.9) satisfies

11 " - Re A1

Proof. The bound for \u(0)\ is obvious, and the bound for ||iz||2 follows in
the same way as in the proof of the previous lemma. •

We will also need elementary estimates for the roots Aii2 of the charac-
teristic equation

A2 + aA-cr = 0 (10.6)

for small \a\.

Lemma 10.3 Consider (10.6) for

a e R, a^O , Recr>0, \a\ < 6.

The roots are
2

\i = -a + O(\<r\), X2 = - - - i ' ^ ' ~ ' 3

If 8 = 6 (a) > 0 is small enough, then

Proof. We only show (10.7). Setting x = Re<r, y = Ima, the formula for
A2 yields

2 ^
CL (JJ

Here x/a and y2/a3 are not of opposite sign, and the claim follows. •

As motivated by (10.1) and (10.4), we now consider BVPs

uxx + aux — au = 3>(z), 0 < x < 00; u(0) = 0,

under various assumptions on $(x). Theorem 9.1 will guarantee existence
of a unique solution u G H2(0,00). The estimates in the following lemmas
hold for this particular solution.

Lemma 10.4 Consider the BVP

uxx + aux - au = Fx(x), 0 < x < 00; u(0) = 0,

where

flgi, Recr>0, cr^O,
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and F £ Cl,F,FX <E L2. Then the #2-solution satisfies

IKI|2 + MN|2 <K(\ + —\ \\F\\2 (10.8)

with a constant K independent of a, a, and F.

Proof. Integration by parts yields

-\\ux\\
2 - a(u, ux) - a\\u\\2 = -(ux, F). (10.9)

Taking the absolute value of the real part, one finds that

| |^ | | 2 + Re (7| |n | | 2<| |^ | | | |F | | (10.10)

and, consequently,

Kll < 11*11- (io.il)

Case 1: Re a > |Im<r|, thus \a\ <
In this case, (10.10) and (10.11) yield

a\\\u\

Together with (10.11) the estimate (10.8) follows.

Case 2: 0 < Recr < |Ima|, thus |cr| < V2\Ima .
Taking the absolute value of the imaginary part of (10.9) and using (10.11),
we find that

1 ,
\a \\\u\2

a u \\\u•x\

4

Again, together with (10.11) the bound (10.8) follows. •

Lemma 10.5 Consider the BVP

uxx + aux — au = F(x), 0 < x < oo; u(0) = 0,

where

a £ l , a T^O, R e a > 0 , a ^ 0,

and F e C f l l i . There are positive constants 8 and K, which depend on a,
but are independent of a and F, such that

1\ .._.., Rea llmd2

i fk <<$.
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Proof. Let v = ux + au; thus

-a

The eigenvalues {Ai, A2} of A have been discussed in Lemma 10.3, namely,

= -a + O(\a\), \2 = °--~ + O(\a\3). (10.13)

Also, by Lemma 9.3 we have either Re Ai < 0 < Re A2 or Re Ai > 0 > Re A2.
Our notation is set by (10.13).

We transform A to diagonal form,

= diag(Ai,A2),

using the transformation

Q =

0 ;

For the variables V = (V\,V2)T defined by

U
vj=QV (10.14)

one obtains scalar equations

Vlx = AxVi + Hu V2x = A2F2 + H2,

where

Note that the boundary condition tt(O) = 0 transforms to

0. (10.15)()
a

By (10.13), the coefficients are bounded away from zero and infinity.

Case 1: a < 0, thus ReAi > 0 > ReA2.
By Lemma 10.2 we have

Lemma 10.1, (10.16) and (10.15) yield

ra2 <
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Finally, by Lemma 10.3,
1 2

|ReA

and, therefore,

Because of (10.14) and v = ux + au the desired bound follows.

Case 2: a > 0, thus ReAi < 0 < ReA2.
By Lemma 10.2 we have

I W ) | < \\F\\,, \\V2\\
2 < -L- \\F\\l (10.17)

Lemma 10.1, (10.17) and (10.15) yield

\\Vrf < Ka\\F\\2

since |ReAi| ~ |a|. The remaining arguments are the same as in Case 1. •

Lemma 10.6 Let a > 0 and let 6 = 6(a) > 0 be determined as in
Lemma 10.5. Consider the BVP

uxx + aux — au — Fx(x), 0 < x < oo; u(0) = 0,

under the assumptions

Recr>0, 0 < H < 6, FeC1 nit.

There is a constant K = Ka, independent of a and F, such that

Proof. Define v(x) to be the solution of

vx + av = F, v(0) = 0.

Using Lemma 9.1 we find that

and the estimate \\v\\i < ^||-F||i follows easily from

v(x)= f
Jo

The difference w = u — v satisfies

wXx + OLWX — aw = av, w(0) = 0.

By Lemma 10.5,
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where
_ Rea \Ima\2

T — ~r .
a a

If a = x + iy (x, y € R), then

|cr|2 = x2 + y2 < Sx + y2 < Cr.

Thus we find

IKH2 + IMI2<^IMI?,
and, together with the estimates for v, the lemma is proved. •

Lemma 10.7 Let a < 0 and let 6 = 6(a) > 0 be determined as in
Lemma 10.5. Consider the BVP

uxx + aux - au = Fx(x), 0 < x < oo; u(0) = 0,

under the assumptions

Recr>0, 0 < |CT| < 6, F e ^ n l i .

There is a constant K = Ka, independent of a and F, such that

Here A2 = f + O(\a\2) is small.

Proof. Define v (x) to be the L2-solution of

vx + av = F, 0 < x < oo;

thus
POO

v{x) = - j e-<x-VF(£)d£. (10.18)

Using Lemma 9.2 we find that

and the estimates

K 0 ) | < HFlIx, \\v\\, <
\a

follow easily from (10.18).

The difference w = u — v satisfies

Wxx + awx — aw = ay, w(0) — — v(0).

We write w = w\ + W?. where w\ and w^ solve

wixx + awix - aw\ = av, wi(0) = 0,
W2xx + dW2x — O-W2 = 0, ^2(0) = — v(0).
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The estimate of w\ proceeds in the same way as the estimate of w in the
proof of the previous lemma; thus

Finally, we have W2(x) = — v(0)eX2X and, therefore,

2|ReA2| ~ 2|ReA2|'

From these estimates the lemma follows. •

10.2. Weak resolvent estimate

Consider the initial-boundary value problem

d d

ut = Au + Y^ajDjU + Y^DjFjix^t), xeHd, t>0, (10.19)
j=\ j=\

u(x,0) = 0, i e Hd; u{x,t) = 0, i £ dHd, t > 0, (10.20)

with real constants a,j and assume a\ ̂  0.
For the one-dimensional hyperbolic problem

vt = aiD1v + F(x1,t), 0 < xx < oo, t>0,

the cases oi > 0 and a\ < 0 are quite different. If a\ > 0, then v is an out-
going characteristic variable, no boundary condition can be given at x\ = 0,
and one can easily estimate v by F. In contrast, if a\ < 0, then v is an
in-going characteristic variable, one needs a boundary condition at x\ = 0,
and estimates of v by F are more restrictive. As we will see, the two cases
oi > 0 and a\ < 0 also lead to different stability conditions for (10.19),
(10.20).

Fourier transformation in the tangential variables x 2 , . . . , Xd and Laplace
transformation in time leads to the following family of ordinary BVPs for
u = U{X\,UJ, s):

d

DJu + a\Diu — au = —D\F\ — i'S^ujjFj =: $(xi,o;, s), 0 < x\ < oo,

(10.21)
with boundary condition

u(0,u,s)=0. (10.22)

Here
d

a = s + \u\2 -i^ujdj, Lo€Rd~\ Res>0. (10.23)
3=2
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The next lemma gives the essential estimate of u by JP in the case ai > 0.
Its proof follows by collecting the relevant auxiliary results of Sections 9.1
and 10.1.

Lemma 10.8 Let ai > 0,Res > 0,w G R d - 1 , and let 6 = 6(ai) > 0 be
determined as in Lemma 10.5. If \<r\ > 6, then

/ i,u, s)\
2 + (\u\2

, w, s)

< K

= KIIF(.,W,S)II2.
If 0 < \a\ < S, then

)\u{xi,u:, s)\ + {\LO

(10.24)

f
Jo

;, s)|2J

< K\\F(.,u,s)\\2 + K (10.25)

Proof. Write the right-hand side of (10.21) as $ = $ i +

and decompose u = u\ + U2 accordingly. We treat four cases separately.

Case 1:
Note that

a > 6; estimate of u\.

By Lemma 10.4,

+ 1 <

H-

< cr .

Case 2: |<r| > 6; estimate of U2-
By Theorem 9.2,

\\Dxu2u2\\
2

H- l)| |i*i| |2 <

|n2||
2 < n |

d

j=2
(10.26)

Here we have used that |<r| > UJ\

Case 3: 0 < \a\ < 6; estimate of ui.
First note that \u\2 < \a\ < 6. Therefore, by Lemma 10.6,

„-; l|2 + (|u;|2 + 1) Huill2 < + (10-27)
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Case 4: 0 < \a\ < 6; estimate of {t2.
By Lemma 10.5,

||£>iW2||2 + (|w|2 + 1) ||u2||2 < K (1 + - J | |$2 | | 2 (10.28)

with
Reu I a;

r > >
2

As before, | |$ 2 | | 2 < |w|2||F||2. Therefore, the right-hand side of (10.28) is
bounded by K\\Ff.

Collecting these estimates, we have proved the lemma. •

It will be convenient to use the following cut-off function x(w> s)>

1 if
0 if

where a = a(u,s) is denned by (10.23). Also, from the definition of the
Fourier-Laplace transform,

\Fj{xuu,s)\< [ [ \Fj(xi,x-,t)\dx-dt,
JO JRd-1

and integration over 0 < x\ < c» yields

Therefore, the two estimates proved in Lemma 10.8 can be summarized by
the following inequality:

>, s)|22J
(10.29)

Here ui G R d - 1 and s € C with Res > 0 are arbitrary, except that we require

(If ui = 0, s = 0, then a = 0. However, for a — 0 the solution of the BVPs
treated in Lemma 10.4, etc., is not in L2, in general. In the application of
Parseval's relation, the single exceptional point a = 0 causes no problem.)

To estimate u(x, t), instead of u, we apply Parseval's relation with rj = 0.
First, Parseval's relation yields

f
Jo POO P PC

c / /
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Integrating (10.29) over u £ M^"1 and s — i£, —oo < £ < oo, we find that
oo /-oo

2 il(^x(o,oo)) (10-31)

with

J= f I™ x(u,iOdudC (10.32)
./Rd-i i-oo

It is clear that J is finite since x(a>,£) = 0 if |u;| > c$ or |£| > c$.
Therefore, we have proved the following resolvent estimate.

Theorem 10.1 Consider the initial-boundary value problem (10.19) and
(10.20) with ai > 0 and

F e L2(H
d x (0, oo)) fl Lx(H

d x (0, oo)).

Then we have

(10.33)
where C does not depend on F.

In case ai < 0 we obtain the same result if the number of space dimensions
is d > 3.

Theorem 10.2 Consider the initial-boundary value problem (10.19) and
(10.20) with a\ < 0. Under the same assumptions on F as in Theorem 10.1
the estimate (10.33) holds if d > 3.

Proof. If a\ < 0, Lemma 10.8 needs to be modified. Using the notation of
the proof of Lemma 10.8, we have, by Lemma 10.7,

Case 3a: 0 < \a\ < 6; estimate of u\ if a\ < 0:

HA^ill2 + (M2 + i)||ui||2 < i q^ l l 2 + ^ ^ 2

All other estimates in the proof of Lemma 10.8 remain unchanged. There-
fore, in the estimate corresponding to (10.29) the factor x(u;,s) has to be
replaced by

|ReA2|

and, consequently, instead of the integral J (see (10.32)) one has to consider

J'=[ r , *<";*> da, dj. (10.34)
7 d i | R e A ( a ; i 0 l * V '
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By Lemma 10.3,

i=2

Since the integral

is finite for d— 1 > 2, the integral J' is also finite, and the theorem is proved.

•
As in Section 6, the basic estimates of Theorem 10.1 and 10.2 can be

extended. Assuming compatibility conditions are satisfied, one may assume
Fj(x,0) = 0. Then ut satisfies

)jFjt, ut = 0 at t = 0,

and one obtains an estimate for ut and its first space derivatives, etc. The
perturbation terms for which one obtains nonlinear stability are described
in Section 8.3.

11. Eigenvalue and spectral conditions for parabolic
problems on the line

In Section 6 we have considered parabolic problems

ut = Pu + ef(x, t, u, ux, uxx) + F(x, t)

in a finite interval 0 < x < 1 and have shown that the eigenvalue condition
for P is necessary and sufficient for nonlinear stability. Here the eigenvalue
condition for P requires that the problem

P<f) = \(f>, R<f> = 0 ,

has no eigenvalue A with Re A > 0. (With R(f> = 0 we denote homogen-
eous boundary conditions; see Section 6.) Such a result is not restricted to
bounded intervals, but can be generalized to parabolic problems in bounded
domains in any number of space dimensions.

On the other hand, the result cannot be extended to unbounded domains
without further restrictions. For example, consider the problem on the half-
line,

ut = «ii + aux + G(x, t), 0 < x < oo,
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with initial and boundary conditions

u(x,0) = 0, x > 0; u(0,t) = 0, t > 0,

and a € R. It is easy to see that the corresponding eigenvalue problem

= 0, 4>e L2(0,oo),

has no eigenvalue A with Re A > 0. (Use Lemma 9.3.) However, by The-
orem 10.1, we can only obtain a weak resolvent estimate, and need the extra
assumptions a > 0 and G(x,t) = Fx(x,t).

We shall now discuss cases for parabolic problems on the real line — oo <
x < oo for which the eigenvalue condition for P does imply a strong resolvent
estimate. The results can be extended to multi-dimensions.

The main principle is to reduce the problem on the infinite line to a
problem on a finite interval — L < x < L by expressing the 'tails' of the
problem as boundary conditions at x = ±L. (In numerical computations a
similar process is often used when one introduces an artificial boundary for
infinite domain problems; see, for example, Hagstrom and Keller (1986).)

To be more specific, consider a parabolic system

ut = Pu + F(x,t), xGR, t > 0,

with initial condition

u(x,0) = 0, i e l .

Here

Pu = (A(x)ux)x + B(x)ux + C(x)u (11.1)

with smooth matrix functions A(x),B(x),C(x) taking values in C"x n, and
parabolicity of ut = Pu requires

A(x) = A*(x) >aI>0, i € i .

Also, we assume that the coefficients A(x),B(x),C(x) converge exponen-
tially fast to constant matrices A±, B±, C± as x —> ±oo. For example,

\A{x) - A+\

with 7 > 0. The properties of the resulting constant coefficient equations

ut = P+u and ut = P~u

are very important. (We set P+u = A+uxx + B+ux + C+u, and P_ is
denned correspondingly.) The following lemma relates properties of the
symbols P±(iw), u £ R, to decay and growth properties of the solutions of
the homogeneous equations

P±u — su = 0.
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L e m m a 11.1 Let Ao, Bo, Co € C n x m denote constant matrices with Ao =
Al>al> 0, and let

PQ(K) = K2AO

denote the symbol of

PQU = Aouxx + BQUX +

The following two conditions are equivalent.

(1) There is a constant 8\ > 0, such that

det(P0(iuj) - XI) = 0 a n d w e l (11.2)

implies Re A < — 6i < 0.

(2) There are constants 7 > 0 and 62 > 0, such that

det(F0(«) - si) = 0 and Res > -82 (11.3)

implies |Re«| > 7 > 0.

Proof. First assume condition (1) and let Res > —6\/2. If K solves (11.3),
then (1) implies Ren ^ 0. Fix any c > 0. If |s| < c and Res > —8\/2 then,
by continuity, there exists 7 = 7(c) > 0 with |Re K\ > 7 > 0 for all solutions
K of (11.3). For large s, \s\ > c, the roots K of (11.3) satisfy to leading order

det(AC2vl - si) = 0.

If ct\,..., an denote the eigenvalues of A, then dj > a and

(11.4)

Therefore, if Res > —1 and \s\ is large, then |Re/c| > 1. This shows that
(1) implies (2).

Now assume condition (2) and let u and A satisfy (11.2). By (2) we have
Re A < — 62, and the lemma is proved. •

Under the assumptions of the lemma, equation (11.3) for K, which is
sometimes called the dispersion relation, has 2n roots Kj with

Re Kj < —7, j = 1 , . . . , n and Re Kj > 7, j = n + 1 , . . . , 2n.

This follows from (11.4) and continuous dependence of the roots on s. In
the language of dynamical systems, the homogeneous equation P$u — su = 0
has an exponential dichotomy on R, which is uniform for Res > — 62-

Now consider the variable coefficient operator P given by (11.1) and recall
A(x) —>• A± as x —y ±00, etc. We say that P satisfies the strong spectral
condition if both operators, P+ and P-, satisfy the conditions of the previous
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lemma; that is, there exists <5i > 0 such that, for all w £ l ,

A € a(P+(iio)) U cr(P-(iuj)) implies Re A < -8X < 0. (11.5)

Also, P satisfies the weak spectral condition if, for all u G R,

A G cr(P+(io;)) U a{P-{\u)) implies Re A < 0. (11.6)

To give a simple example, consider the scalar operator

Pu = uxx + aux + bu, a, b £ R,

with P(ico) = —to2 + iaco + b. We see that P satisfies the strong spectral
condition if b < 0, but only the weak spectral condition if b = 0. Neither
condition holds for b > 0.

The following result can be proved.

Theorem 11.1 Assume that P has the form (11.1) and satisfies the strong
spectral condition. If the eigenvalue problem

P4> = X4>, 4> € L 2 ( R ) , (11-7)

has no eigenvalue A with Re A > 0, then a strong resolvent estimate (as
in Section 6) holds. One obtains nonlinear stability with perturbations
ef(x,t,u,ux,uxx) as in Section 6.

The main part of the proof consists of reducing the infinite interval to
a finite one; Lemma 11.1 is one step in showing that such a reduction is
possible. For the finite-interval problem, the techniques of Section 6 apply.
We refer to Kreiss, Kreiss and Petersson (1994a) for details.

Theorem 11.1 can be used to discuss stability of travelling; see Kreiss et
al. (1994a) and the literature cited there. (There is a technical problem
resulting from a zero eigenvalue of P, which corresponds to shifting the
travelling wave. Using a projection as in Henry (1981) and Kreiss et al.
(1994a), this problem can be overcome, however.)

In many interesting cases only the weak spectral condition (11.6) is sat-
isfied. Then, for scalar equations, one can often use exponentially weighted
norms as pioneered by Sattinger (1976). Instead of using these norms, one
can also make a change of the dependent variable u so that, in the new
variable, the strong spectral condition (11.5) is satisfied.

For systems of equations, however, this approach does not generally give
the desired results. Nevertheless, stability has recently been shown for rather
general travelling shock waves governed by systems of conservation laws
(Kreiss and Kreiss 1997). Essentially, the only requirements are the weak
spectral condition and the condition that (11.7) has no eigenvalue A with
Re A > 0 except A = 0. The inhomogeneous term and the nonlinear per-
turbation must satisfy the restrictions of Section 8.
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